Высвобождение энергии из продуктов. Физиология аденозинтрифосфата (АТФ)
Добавил пользователь Владимир З. Обновлено: 14.12.2024
АТФ — это аденозинтрифосфорная кислота, являющаяся основным источником клеточной энергии.
В биологии АТФ является важным клеточным веществом: она относится к группе нуклеозидтрифосфатов и обеспечивает метаболизм живых клеток.
Первыми открыли АТФ в клетках такие ученые-биохимики как Суббарао, Ломан и Фиске: произошло это в 1929 году. В развитии биологии живых систем исследования особенностей и строения АТФ стали революционными. Несколькими годами позднее была установлена энергетическая функция АТФ. Сделал это в 1941 году Ф. Лимпан.
В строении АТФ можно выделить определенные черты:
- она представляет собой трифосфорный эфир аденозина;
- где образуется АТФ? Ее образование происходит в результате соединения аденина, которые представляет собой пуриновое азотистое основание;
- соединение АТФ с 1’-углеродом рибозы происходит при помощи β-N-гликозидной связи.
Как видно, ответ на вопрос, что такое АТФ в биологии прост: это соединение, содержащее связи, в результате гидролиза которых происходит высвобождение огромного количества энергии. Такие связи получили название макроэргических. В результате гидролиза образуется следующее количество энергии: 40 и 60 кДж/моль. В ходе гидролиза также происходит отщепление одного либо двух остатков фосфорной кислоты.
Химически эти реакции выглядят так:
- АТФ+вода → АДФ+фосфорная кислота+энергия;
- АТФ+вода → АМФ+фосфорная кислота+энергия.
Есть 2 основных момента, которые имеют большое значение в биоэнергетическом обмене веществ живых организмов:
- запасание химической энергии осуществляется при помощи образования АТФ в ходе катаболических реакций окисления органических субстратов;
- утилизация химической энергии происходит в результате расщепления АТФ. Наблюдается связь между этим процессом и эндергоническими реакциями анаболизма, а также иными процессами, нуждающимися в энергетических затратах.
Строение и функции АТФ связаны со способами ее образования в клетке. Есть 3 способа:
- Фотофосфорилирование.
- Окислительное фосфорилирование;
- Субстратное фосфорилирование (протекает в цитоплазме клеток). Имеются в виду гликолиз и анаэробный этап аэробного дыхания.
Роль АТФ в клетке
Каково значение АТФ в клетке?
Процесс фосфорилирования представляет собой то же окислительное фосфорилирование за исключением того, что реакции фосфорилирования протекают в хлоропластах клетки под влиянием света.
Образование АТФ происходит на световой стадии фотосинтеза, который является основным процессом получения энергии зелеными растениями, водорослями и отдельными бактериями.
Основная функция АТФ в клетке — энергетическая. Это связано со строением молекулы АТФ. Молекула АТФ содержит две высокоэнергетические связи, и она обеспечивает множество физиологических и биохимических процессов. Среди них — все реакции синтеза вещества в организме.
Реакции синтеза представляют собой комплекс химических реакций, которые направлены на создание вещества с определенным уровнем затрат энергии.
Можно наблюдать активный перенос молекул через клеточную мембрану. Также речь идет об участии в создании межмембранного электрического потенциала. В каких еще процессах жизнедеятельности участвуют клетки АТФ? В функции АТФ также входит обеспечение процесса сокращения мышц.
В биологии АТФ — это кислота, которая выполняет ряд важных функций:
- является медиатором в синапсах, выступает в роли сигнального вещества в других клеточных взаимодействиях (к примеру, при пуринергической передаче сигнала);
- выполняет роль регулятора биохимических процессов. С участием АТФ усиливается и подавляется активность отдельных ферментов при помощи присоединения молекулы к их регуляторным центрам;
- принимает участие в создании циклического аденозинмонофосфата: он является посредником в процессе передачи гормональных сигналов в клетки;
- принимает участие в синтезе нуклеиновых кислоты — ДНК и РНК;
- она обеспечивает все двигательные реакции организма. Ее наличие или отсутствие определяют работу всех элементов опорно-двигательного аппарата.
Все функции АТФ основаны на том, что кислота используется, чтобы реализовать жизненные клеточные процессы. Даже если АТФ не участвует в этих процессах прямо, она так или иначе обуславливает деятельность организма.
Синтез АТФ в клетке является непрерывным процессом. Это связано с тем, что организм нуждается в энергии для всех процессов жизнедеятельности. Однако есть определенное количество АТФ в клетке, которое должна оставаться неиспользованным — оно равно 250 граммам.
Если жизнедеятельность организма как-либо нарушается или человек болеет, то синтез АТФ идет активнее: таким образом покрываются затраты иммунной системы. Отмечается активизация системы терморегуляции организма. Но обеспечение ее работы тоже затрачивается много энергии.
В мышцах и нервной ткани содержится больше всего АТФ: в этих клетках обмен энергии протекает намного быстрее. Поддержание постоянного уровня АТФ в клетках важно, так как даже минимальная нехватка этого вещества приводит к серьезным нарушениям любого физиологического процесса.
Как видно, по АТФ можно судить о стабильности развития организма человека и многих высокоорганизованных животных.
Вот еще некоторые интересные моменты, связанные АТФ:
- в клетке содержится примерно 1 млрд молекул АТФ;
- молекулы АТФ живут очень мало;
- синтез АТФ — достаточно быстрый процесс.
В качестве заключения можно обозначить, что АТФ — часто обновляемое вещество в человеческом организме. Молекула АТФ живет меньше минуты: по этой причине одна молекула АТФ может зарождаться и распадаться примерно 3 тысячи раз в сутки.
За день человеческий организм производит около 40 кг АТФ.
Цикл синтеза АТФ и последующее ее использование как клеточного топлива — наглядный пример сути энергетического обмена внутри живого организма. Аденозинтрифосфорная кислота — своеобразная «батарейка», задача которой заключается в обеспечении нормальной жизнедеятельности клетки.
АТФ - главный энергетический спонсор клетки. Или где взять энергию? Митохондриальные дисфункции.
Сегодня внедряемся в научные изыскания. Статья будет сложной для прочтения. Я максимально упрощала материал, но проще - некуда. На написание меня как всегда "вдохновила" всеобщая бесконечная жалоба - "слабость, ничего не помогает, ваших капельниц, таблеток хватило на 2 недели. ". Сегодня рассмотрим самый сложный случай дефицита Энергии - дисфункция Митохондрий. Это еще малоизученная и сложная часть медицинской науки. Дисфункция митохондрий может быть врожденная и в нашем (рассматриваемом случае) - приобретенная.
Энергия в нашем организме представлена в следующем виде - молекула АТФ.
АТФ-аденозинтрифосфат, является основным источником энергии для клеток в частности и организма в целом. Представляет собой - эфир аденозина (пурин). Кроме того, является источником синтеза нуклеиновых кислот, для образования структуры ДНК!(наш генетический код)и посредником передачи в клетку гормонально сигнала! Вывод: нехватка АТФ - чревата извращение/недостатком гормонального ответа и не только. АТФ образуется в митохондриях (это маленькие структурные компоненты любой клетки, митохондрия имеет собственную ДНК!, как и ядро клетки. это высокоорганизованная структура ). Вот почему заболевания с нарушением синтеза АТФ - называются митохондриальные дисфункции.
В сутки в организме образуется 40 кг АТФ. Органы с максимальной выработкой АТФ: мозг 22%, печень 22%, мышцы 22 %, сердце 9%, жировая ткань всего - 4%, заметьте - ЩЖ с в этот перечень даже не вошла. Мозг и печень лидеры !
Теперь о самом процессе образования энергии. Смотрим на картинку.
Процесс образования энергии можно разделить на 3 этапа.
1 этап - это получение более простых молекул( в цикл образования энергии) из углеводов(У), жиров(Ж) и белков пищи(Б). Углеводы расщепляются до моносахаров(глюкоза,фруктоза), жиры до жирных кислот, белки до аминокислот. "Расщепление" Б,Ж,У происходит как к кислородной среде(аэробной), так и в бескислородной(анаэробной) среде. Это крайне важно! Так как из анаэробного гликолиза 1 молекулы глюкозы образуется - 2 молекулы АТФ, из аэробного (кислородного) гликолиза 1 молекулы глюкозы - образуются 36 молекул АТФ, из аэробного окисления 1 молекулы жирной кислоты - 146 молекул АТФ, ( жиры и белки в бескислородной среде вообще не расщепляются!, вывод - например, при нелеченной анемии(дефицитО2) снижение веса почти невозможно). Так, и усвоение 1 молекулы глюкозы требует 6 молекул О2, а 1 молекулы жирных кислот -23 молекулы О2. Вывод - жиры основной источник энергии, и всем нужен О2.
2 этапом - образуется из всех молекул У, Ж, Б - АцетилКоА - промежуточный метаболит. Суть этого этапа, что кол-во выработанного АцетилКоА зависит от уровня многих витаминов и микроэлементов (витамина С, группы В, цинка, меди, железа и др). Почему так важно для образования энергии - восполнение дефицита этих элементов!
3 этап - этот самый АцетилКоА поступает в 2 основных биохимических пути выработки АТФ - это цикл Кребса( лимонной кислоты) и цикл окислительного фосфорилирования ( передачи электронов, "дыхательная цепь";), происходит образование НАД- и НАДН+. Связь между этими двумя б/х циклами - и "есть узкое горлышко", "слабое место" в образовании АТФ. И зависит от рН среды клетки - при развитии в/клеточной гипоксии = в/клеточного ацидоза и ухудшается процесс образования АТФ - организм захлебывается в избытке НАДН, а НАДН сопряжен с "утечкой кислорода из клетки"( механизм не буду расшифровывать) и образованием активных(агрессивных) форм кислорода ( свободных радикалов) - а это повреждающие агенты для клетки при образовании в избыточном количестве.
Метаболический ацидоз - это следствие первичного дефицита О2 в организме (сам ацидоз становится причиной вторичного дефицита О2-утечки кислорода). Ацидоз выражается накоплением промежуточного продукта обмена - лактата, избытком Н+(иона водорода), митохондрии "начинают задыхаться и стареть и гибнуть"! А в месте со старением митохондрий - стареет организм, вот почему так молодеют некоторые заболевания - раньше развиваются атеросклероз, б-нь Альцгеймера, сахарный диабет (да-да , это митохондриальное заболевание), рак, артериальная гипертензия, АИТ, синдром хр усталости, даже НЯК и болезнь Крона (как одна из теорий) и др.
Как цикл лимонной кислоты (цикл Кребса) , например, связан с ожирением? - активное поступления с пищей жирных кислот- приводят к истощению транспортных карнитиновых (всем известен для сравнения Карнитин для спорт -питания) систем( переносчиков жирных кислот, их и так немного) и снижения активности работы "дыхательной цепи" , снижается чувствительность тканей к инсулину- развивается многим известная инсулинорезистентость! Исход - метаболическая печалька - метаболический синдром.
Соответственно: причинами снижения синтеза АТФ прежде всего являются дефицит О2!(как бывает в больших городах, где мало зелени. загазованность - продукт сгорания бензина это не О2-а СО2 . люди не выходят из помещений, мало двигаются - "мелкие сосуды закрыты для доступа О2", причинами могут быть болезни органов дыхания и сердечно-сосудистые патологии), ацидоз = "закисление организма" (накопление лактата, избыток Н+), полидефицит витаминов и микроэлементов для улучшения усвоения Ж, Б, У. Для лечение дефицита О2 даже был придуман аппарат - в основе которого интервальная гипоксическая тренировка. Это новая эра в лечении многих патологий.
Как же заподозрить митохондриальные проблемы? Они сложны как для понятия, так и для диагностики.
Из "простых анализов", которые можно набрать любой лаборатории - снижение рН крови, О2, повышение: лактата, СРБ, фибриногена, холестерина, ЛПНП, триглицеридов, гомоцистеина, мочевой кислоты, (клинически - повышение Ад, учащение ЧСС в покое, одышка в покое), снижение ферритина, из редких - снижение глутатиона, витаминов крови, снижение Q10, нарушение в системе антиоксидантов (по крови).
Из более редких , но все же доступных анализов (более специфических) - органические кислоты мочи ( благодаря этому анализу можно определить примерно на каком уровне идет нарушение и чем его скорректировать).
Если патология так сложно выявляемая - "как это лечить?",- спросите вы
Прежде всего меняем образ жизни - улучшаем доставку О2!, бросаем курить! чаще дышим в парке и не только.. Лечим и приводим в ремиссию хронические дыхательные заболевания , восполняем дефицит витаминов и минералов!, добавляем антиоксиданты, сосудистые препараты(!) очень важно улучшить кровоток (слабость всегда сопровождается рассеянностью, снижением памяти и внимания, - правильно, максимальная сосудистая сеть в головном мозге!!), реже добавляем "энергетики" - янтарная кислота, Q10, карнитин, НАДН и др. Я не говорю здесь про врожденные митохондриальные дисфункции - это следствие генетической поломки,а мы говорим сейчас больше о приобретенных причинах. Будем ждать новых научных материалов по этой теме.
АТФ (Аденозинтрифосфат)
АТФ (Аденозинтрифосфорная кислота)
Что такое АТФ?
АТФ (аденозинтрифосфат, аденозинтрифосфорная кислота) - основное макроэргическое соединение организма[1]. Состоит из аденина (азотистого основания), рибозы (углевод) и трех последовательно расположенных фосфатных остатков, причем второй и третий фосфатные остатки присоединяются макроэргической связью. Структура АТФ выглядит следующим образом (рис.1).
Рис. 1. Структура АТФ
История открытия АТФ
АТФ был открыт(а) в 1929 году немецким биохимиком Карлом Ломаном (Karl Lohmann) и, независимо Сайрусом Фиске (Cyrus Fiske) и Йеллапрагада Субба Рао (Yellapragada Subba Rao) из Гарвардской медицинской школы. Однако структура АТФ была установлена только спустя несколько лет. Владимир Александрович Энгельгардт в 1935 году показал, что для сокращения мышц необходимо присутствие АТФ. В 1939 году В. А. Энгельгардт совместно со своей женой М. Н. Любимовой предъявили доказательства, что миозин проявляет ферментную активность при этом расщепляется АТФ и высвобождается энергия. Фриц Альберт Липманн (Fritz Albert Lipmann) в 1941 году показал, что АТФ является основным переносчиком энергии в клетке. Ему принадлежит фраза «богатые энергией фосфатные связи». В 1948 году Александр Тодд (Alexander Todd) (Великобритания) синтезировал АТФ. В 1997 году Пол Д. Бойер (Paul D. Boyer) и Джон Э. Уокер (John E. Walker) получили Нобелевскую премию по химии за разъяснение ферментативного механизма, лежащего в основе синтеза АТФ.
Содержание АТФ в мышечных волокнах
Количество АТФ в тканях организма человека относительно невелико, поскольку он (она) в тканях не запасается. В мышечных волокнах содержится 5 ммоль на кг сырой ткани или 25 ммоль на кг сухой мышечной ткани.
Гидролиз АТФ
Непосредственным источником энергии при мышечной деятельности является АТФ, который (ая) находится в саркоплазме мышечных волокон. Освобождение энергии происходит в результате реакции гидролиза АТФ.
Гидролиз АТФ - реакция, протекающая в мышечных волокнах, при которой АТФ, взаимодействуя с водой распадается на АДФ и фосфорную кислоту (Н3РО4). При этом выделяется энергия. Гидролиз АТФ ускоряется ферментом АТФ-азой. Этот фермент находится на каждой миозиновой головке толстого филамента.
Реакция гидролиза АТФ имеет следующий вид:
В результате гидролиза 1 моль АТФ выделяется энергия, равная 42-50 кДж (10-12 ккал). Скорость протекания реакции гидролиза повышают ионы кальция. Следует отметить, что АДФ (аденозиндифосфат) в мышечных волокнах выполняет роль универсального акцептора (приёмника) высокоэнергетического фосфата и используется для образования АТФ.
Фосфорная кислота (Н3РО4) в саркоплазме мышечных волокон достаточно быстро диссоциирует на ионы водорода и остаток фосфорной кислоты. В настоящее время доказано, что именно реакция гидролиза АТФ приводит к ацидозу, то есть закислению мышцы, а не гликолиз АТФ, в результате которого образуется молочная кислота (или более точно — лактат).
Фермент АТФ-аза
Фермент АТФ-аза расположен на миозиновых головках, что играет существенную роль в сокращении мышечных волокон. Активность фермента АТФ-азы лежит в основе классификации мышечных волокон на медленные (I тип), промежуточные (IIA тип) и быстрые (IIB тип).
Химическая энергия, выделяемая в результате гидролиза в мышечных волокнах, расходуется на: сокращение мышечных волокон (взаимодействие белков актина и миозина) и на их расслабление (работу кальциевого и натрий-калиевого насосов). При взаимодействии с актином одна молекула миозина за одну секунду гидролизует 10 молекул АТФ.
Запасы АТФ в мышечных волокнах невелики и могут обеспечить выполнение интенсивной работы в течение 1-2 с. Дальнейшая мышечная деятельность осуществляется благодаря быстрому восстановлению (ресинтезу) АТФ, поэтому при сокращении мышечных волокон в них одновременно протекают два процесса: гидролиз АТФ, дающий необходимую энергию и ресинтез АТФ, восполняющий запасы АТФ в мышечных волокнах.
Ресинтез АТФ
Ресинтез АТФ - синтез АТФ в мышечных волокнах из различных энергетических субстратов во время физической работы. Его формула выглядит следующим образом:
Ресинтез АТФ может осуществляться двумя путями:
- без участия кислорода (анаэробный путь);
- с участием кислорода (аэробный путь).
Если в саркоплазме мышечных волокон недостаточно АТФ, то затрудняется процесс их расслабления. Возникают судороги.
Видео про гидролиз и ресинтез АТФ
Литература
- Михайлов С.С. Спортивная биохимия. - М.: Советский спорт, 2009.- 348 с.
- Волков Н.И., Несен Э.Н., Осипенко А.А., Корсун С.Н. Биохимия мышечной деятельности.- Киев: Олимпийская литература, 2000.- 504 с.
[1] Макроэргические соединения - химические соединения, содержащие связи, при гидролизе которых происходит освобождение значительного количества энергии.
Похожие записи:
Распределение масс в теле человека
Описаны особенности распределения масс в теле человека. Дано понятие геометрии масс тела человека. Показано, что на…
Центр масс и центр тяжести тела
Описаны: центр масс (ЦМ) и центр тяжести (ЦТ) твердого тела. Приведены различные определения ЦМ и ЦТ тела. Показано…
Момент силы и плечо силы
Дано определение момента силы и плеча силы. Определение плеча и момента силы рассмотрено на примерах ОДА человека при…
Метаболический стресс. Накопление лактата в мышцах
Описан механизм влияния метаболического стресса (накопления лактата) на гипертрофию мышечных волокон. Показано, что накопление лактата приводит к…
Механическое повреждение мышечных волокон
Описаны механизмы механического повреждения мышечных волокон при силовой тренировке, приводящие к гипертрофии скелетных мышц. Показано, что механическое повреждение…
Механическое напряжение (механотрансдукция) в скелетных мышцах
Описаны процессы передачи механического напряжения в скелетных мышцах. Показано, что механическое напряжение, возникающее вследствие сокращения скелетных…
Ресинтез АТФ
Дано определение ресинтеза АТФ. Описаны основные пути ресинтеза АТФ в мышечных волокнах: креатинфосфатный, гликолитический, миокиназный и тканевое дыхание. Описаны количественные критерии путей ресинтеза АТФ, соотношение между различными путями ресинтеза АТФ при мышечной работе, а также между путями ресинтеза АТФ и зонами относительной мощности.
Ресинтез АТФ в мышечных волокнах
Определение
Ресинтез АТФ - синтез АТФ из различных энергетических субстратов во время физической работы в мышечных волокнах.
Формула ресинтеза АТФ выглядит следующим образом:
Пути ресинтеза АТФ
- с участием кислорода (аэробный путь).
- без участия кислорода (анаэробный путь);
Аэробный путь (тканевое дыхание, аэробное или окислительное фосфорилирование) - основной способ образования АТФ в мышечных волокнах. Он протекает в митохондриях мышечных волокон. В результате тканевого дыхания выделяется 39 молекул АТФ. Окисляемое вещество распадается до углекислого газа и воды.
Анаэробный ресинтез АТФ
Анаэробные пути ресинтеза АТФ являются дополнительными способами образования АТФ в мышечных волокнах в тех случаях, когда основной путь получения АТФ - тканевое дыхание не может обеспечить мышечную деятельность необходимым количество кислорода. Эти механизмы ресинтеза АТФ активно функционируют в начале выполнения физических упражнений, когда тканевое дыхание не полностью «развернулось», а также при физических нагрузках высокой мощности.
Анаэробный ресинтез АТФ в мышечных волокнах возможен посредством нескольких механизмов:
- - ресинтез АТФ из креатинфосфата; - ресинтез АТФ из гликогена мышц;
- Миокиназный (аденилаткиназный) ресинтез АТФ - ресинтез АТФ из АДФ при значительном накоплении в мышечных волокнах АДФ. Рассматривается как аварийный механизм, обеспечивающий ресинтез АТФ, когда другие пути ресинтеза АТФ невозможны.
Количественные критерии путей ресинтеза АТФ
Существуют количественные критерии путей ресинтеза АТФ. К ним можно отнести: максимальную мощность, время развертывания, время сохранения или поддержания максимальной мощности, метаболическую ёмкость (табл. 1).
- Максимальная мощность - максимальное количество АТФ, которое может образоваться в единицу времени при функционировании данного пути ресинтеза АТФ.
- Время развертывания - минимальная длительность, необходимая для выхода ресинтеза АТФ на свою максимальную мощность.
- Время сохранения или поддержания максимальной скорости - длительность функционирования данного пути ресинтеза АТФ с максимальной мощностью.
- Метаболическая ёмкость - количество АТФ, которое может образоваться во время мышечной работы за счёт данного пути ресинтеза АТФ.
Таблица 1. Количественные критерии основных путей ресинтеза АТФ (С.С. Михайлов, 2009)
Соотношение между различными путями ресинтеза АТФ
При любой мышечной работе функционируют все три основных механизма ресинтеза АТФ, но включаются они последовательно. В первые секунды ресинтез АТФ осуществляется за счет креатинфосфатной реакции, затем включается гликолиз. По мере продолжения работы на смену гликолизу приходит тканевое дыхание (рис.1). Эта смена механизмов ресинтеза АТФ приводит к уменьшению суммарной выработки АТФ.
Рис.1. Включение путей ресинтеза АТФ при выполнении физической работы (С.С. Михайлов, 2009)
Пути ресинтеза АТФ и зоны относительной мощности
В.С. Фарфель приводит следующее соотношение мощности работы и основной системы энергообеспечения (табл.2)
Таблица 2. Зоны мощности работы и основная система энергообеспечения (В.С. Фарфель)
Мощность работы | Основная система энергообеспечения | Типичное время работы |
Максимальная | Креатинфосфатная реакция | до 20 с |
Субмаксимальная | Гликолиз | до 5 мин. |
Большая | Гликолиз+ тканевое дыхание | до 30 мин. |
Умеренная | Тканевое дыхание | Более 30 мин. |
J.T. Cramer (2008) приводит несколько иное соотношение зон мощности и основных систем энергообеспечения (табл.3)
Таблица 3. — Зоны относительной мощности и основная ситема энергообеспечения (J.T. Cramer, 2008)
Гидролиз АТФ в мышечных волокнах
Описано протекание реакции гидролиза АТФ в мышечных волокнах. Показано, что именно реакция гидролиза АТФ приводит к ацидозу, то есть «закислению» мышцы, а не гликолиз.
Реакция гидролиза АТФ в мышечных волокнах
Непосредственным источником энергии при мышечной деятельности является АТФ (аденозинтрифосфат), который находится в саркоплазме. Освобождение энергии происходит в результате реакции гидролиза АТФ.
Гидролиз АТФ - реакция, протекающая в мышечных волокнах, при которой происходит взаимодействие АТФ с водой (гидролиз).
В результате гидролиза 1 моль АТФ выделяется энергия, равная 30 кДж.
Энергия, выделяемая в результате гидролиза АТФ в мышечных волокнах, расходуется на: сокращение мышечных волокон (взаимодействие белков актина и миозина) и на их расслабление (работу кальциевого и натрий-калиевого насосов).
Ацидоз (закисление) мышечных волокон
Фосфорная кислота (Н3РО4) в саркоплазме достаточно быстро диссоциирует на ионы водорода и неорганический фосфат (остаток фосфорной кислоты). Накопление ионов водорода вызывает ацидоз мышцы, то есть ее «закисление». При этом рН саркоплазмы сдвигается в кислую сторону и может достигать значений рН=6,4-6,5.
В настоящее время доказано, что именно реакция гидролиза АТФ приводит к ацидозу, то есть «закислению» мышцы, а не гликолиз. Так, по данным Robergs R.A.(2001) в течение трех минутной физической нагрузки субмаксимальной интенсивности высвобождение ионов водорода посредством гидролиза АТФ составляет 215 ммоль/кг, а гликолиза только 129 ммоль/кг, рис.1.
Рис.1. Высвобождение ионов водорода посредством гидролиза АТФ и гликолиза
Гидролиз АТФ ускоряется ферментом АТФ-азой Этот фермент расположен на миозиновых головках толстого филамента. Молекула миозина имеет большой отрицательный заряд. Ионы кальция (Ca 2+ ), выделяющиеся из саркоплазматического ретикулума при сокращении мышечного волокна, повышают АТФ-азную активность миозина и скорость гидролиза АТФ.
Содержание АТФ в мышечных волокнах незначительное и составляет 5 ммоль/кг сырой массы мышц. Оно поддерживается на относительно постоянном уровне, так как повышение концентрации АТФ в скелетных мышцах вызывает угнетение АТФ-азы и снижению сократительной способности миозина. Снижение концентрации АТФ ниже 2 ммоль/кг сырой массы приводит к нарушению работы кальциевого насоса и процесса расслабления мышц.
Активность фермента АТФ-азы лежит в основе разделения мышечных волокон на типы: медленные (I тип), промежуточные (IIA тип) и быстрые (IIB тип). В медленных мышечных волокнах активность этого фермента низкая, а в быстрых - высокая. Активность АТФ-азы миозина связана с типом (изоформой) миозина, содержащегося в данном волокне. Это обстоятельство позволяет посредством гистохимических методов определить какой именно миозин содержится в то или ином мышечном волокне.
Болезненные ощущения в мышцах во время тренировки
Гидролиз АТФ, приводящий к накоплению в саркоплазме кислых продуктов, активирует работу антитранспортера, который выкачивает из мышечного волокна в тканевую жидкость ионы водорода и закачивает в мышечное волокно ионы натрия. «Закисление» тканевой жидкости воздействует на болевые рецепторы (ноцицепторы), чувствительные к изменению рН. В результате спортсмены ощущают в скелетных мышцах жжение и боль.
Читайте также: