Значение давление кислорода на его токсичность. Окисление пиридиннуклеотида при кислородном отравлении
Добавил пользователь Евгений Кузнецов Обновлено: 14.12.2024
· Угарный газ (СО) - это газ, который не пахнет, не имеет вкуса и цвета.
· Возникает в результате неполного сгорания углеводородов. Газ быстро и эффективно всасывается через легкие.
· СО связывается с гемоглобином, но имеет гораздо более высокое сродство, чем кислород, и образует обратимый комплекс, монооксид углерода, гемоглобин CO-Hb.
· Уменьшает способность крови переносить кислород и вызывает общую гипоксию.
· Угарный газ оказывает прямое пагубное влияние на клеточный уровень. Количество свободного CO в плазме вызывает широкий спектр симптомов, наблюдаемых при отравлении, и не всегда коррелируются изменением уровня CO-Hb.
Этиология и патогенез
Первая помощь должна быть оказана максимально оперативно, так как угарный газ быстро диффундирует через легочную капиллярную мембрану и связывается с железной частью гемма. Это происходит с примерно в 240 раз большей аффинностью, чем с кислородом.
Степень гемоглобинемии окиси углерода (CO-Hb) является функцией относительного количества СО и кислорода в воздухе, продолжительности воздействия и объема дыхания в минуту.
Некурящие могут иметь до 3% СО в крови, в то время как курильщики имеют уровни 10-15%.
Когда СО связывается с гемом, способность выделять кислород непосредственно в периферическую ткань организма снижается. Таким образом, дефицит кислорода происходит в тканях. CO влияет на периферическое потребление кислорода несколькими способами.
Концентрация СО в атмосфере обычно ниже 0,001%, но она выше в городских районах и в закрытых помещениях.
Большинство смертельных отравлений угарным газом происходит из-за пожаров, утечек в печах, портативных источников питания, работающих на бензине, гриля в помещении, выхлопных газов автомобилей. Угарный газ быстро всасывается в легкие. Выделение зависит от степени оксигенации и, в меньшей степени, минутного объема.
· Период полувыведения СО, когда человек дышит обычным воздухом, составляет около 300 минут.
· Если вы дышите богатым кислородом воздухом через маску, которая фильтрует выдыхаемый воздух, период полураспада составляет около 90 минут.
· При 100% гипербарическом кислороде это около 30 минут.
Вероятность смертельного исхода отравления возрастает при отсутствии своевременной помощи.
Повреждение органов
Повреждение органов вызывается как минимум двумя механизмами:
- Угарный газ оказывает наибольшее влияние на органы с самыми высокими потребностями в кислороде - мозг и сердце. Отравление угарным газом вызывает активацию тромбоцитов, образование свободных радикалов и перекисное окисление липидов в мозге и других тканях, с помощью иммунологического механизма. Это провоцирует острое повреждение тканей мозга, сердца и других органов.
- У пациентов с отравлением угарным газом происходит острая травма миокарда, приводящая к повышенной смертности. CO связывается с сердечным миоглобином с большей аффинностью, чем гемоглобин, увеличивая риск депрессии и гипотонии миокарда, что, в свою очередь, усугубляет гипоксию тканей.
Причина последствий отравления угарным газом до конца не выяснена, однако частота неврологических осложнений составляет 12-68%. Эта цифра напрямую зависит от скорости и квалифицированности оказания первой помощи.
Признаки отравления и диагностические критерии
Острое отравление угарным газом подозревается из истории болезни. Диагноз подтверждается обнаружением повышенного уровня CO-Hb.
Это приводит к дифференцированным проявлениям в виде следующих признаков:
· Инфекция верхних дыхательных путей.
История болезни
Отравление угарным газом имеет очень разнообразные и неспецифические симптомы:
· Пациенты с отравлением угарным газом от легкой до умеренной степени могут иметь головную боль, летаргию, тошноту и головокружение.
· Они также чувствуют одышку и боль в груди.
· Постепенно может возникнуть растерянность и потеря сознания.
· Хроническое отравление угарным газом дает неопределенные симптомы, которые могут быть истолкованы как вирусное заболевание.
Клинические данные
Клинические проявления отравления угарным газом обычно ограничиваются изменениями психического статуса при отсутствии других травм или ожогов:
· Пациент может находиться в состоянии от легкого замешательства до комы.
· Тяжелое отравление угарным газом вызывает неврологические симптомы, такие как судороги, обмороки или кому.
· Сердечно-сосудистые и метаболические проявления, такие как ишемия миокарда, желудочковые аритмии, отек легких и выраженный лактат-ацидоз.
Важно знать о возможности острого повреждения миокарда и отсроченных неврологических последствиях.
Примерно у 40% пациентов со значительным воздействием СО наблюдается состояние с задержкой нервно-психического синдрома. Они могут возникать через 3-240 дней после выздоровления пациента.
· Различной степенью когнитивной недостаточности.
· Очаговыми неврологическими последствиями.
Синдром обычно возникает в течение 20 дней после отравления угарным газом, и результаты могут наблюдаться в течение года. Развитие синдрома плохо коррелирует с уровнями CO-Hb, хотя большинство случаев связано с этим.
Дополнительные исследования
Считается, что летальная концентрация CO-Hb находится в диапазоне > 40%. Младенцы, беременные и пожилые люди имеют более низкую толерантность к CO и могут иметь опасные для жизни отравления при более низких уровнях CO-Hb. Для хронических курильщиков это значение до 10%.
- Газы артериальной крови. PO2 в крови часто будет нормальным, потому что PO2 отражает O2, растворенный в крови, и CO не влияет на этот процесс.
- Кислотное состояние. Метаболический ацидоз возникает вторично по отношению к лактоацидозу в результате ишемии.
- ЭКГ показывает ишемические признаки и аритмии. Маркеры инфаркта берутся при подозрении на повреждение миокарда.
- Состояние крови, тропонин, креатинкиназа МБ, миоглобин, электролиты, глюкоза, печеночные пробы, уровень цианидов.
Помимо вышеперечисленного проводятся и другие исследования:
- Рентгенограмма грудной клетки. В случае неясной картины болезни исследование обычно нормальное.
- КТ головного мозга. Может иметь отношение к исключению дифференциальных диагнозов.
- Нейропсихиатрический тест.
Куда направляют пациента
Пациенты с CO-Hb > 40%, с сердечно-сосудистыми или неврологическими расстройствами должны проходить обследование в учреждении с гипербарической кислородной терапией. Если через 4 часа после лечения нормобарическим кислородом у пациента возникают стойкие нарушения, его следует перевести в гипербарический центр.
Цели терапии
Терапия направлена на ускорение выброса угарного газа из крови и профилактику церебральных и сердечных осложнений.
· CO удаляется почти исключительно благодаря циркуляции легких через конкурентное связывание гемоглобина с кислородом.
· Основным действием при отравлении угарным газом является немедленное удаление пациента от его источника и начало подачи кислорода через лицевую маску.
· Коматозный пациент с тяжелым нарушенным психическим состоянием должен быть интубирован как можно скорее, и механически вентилирован 100% кислородом.
· Для пациентов с отравлением угарным газом после вдыхания дыма важно оценить, есть ли сопутствующее отравление цианидом, которое может еще больше усугубить оксигенацию тканей и степень клеточной гипоксии.
Пациент должен быть госпитализирован в случаях, когда симптомы не уменьшают оксигенацию, когда ЭКГ или лабораторные анализы указывают на тяжелое отравление или когда у пациента есть другие медицинские или социальные причины.
Неотложная помощь при отравлении угарным газом
Чтобы помочь пациенту, который надышался угарным газом, следует предпринять следующие меры.
- Удалить человека от источника воздействия.
- Немедленно начать лечение кислородом, желательно с маской, которая отфильтровывает выдыхаемый воздух.
- Коматозного пациента интубировать.
- Установить мониторинг сердца.
- Уведомить больницу о пациенте, чтобы там могли подготовить перевод в центр, который обеспечит гипербарическую кислородную терапию.
- Взять образец крови для последующего измерения СО. Тем не менее, это не рекомендуется, если задерживает начало кислородной обработки и транспортировки.
- Если возможно, рассчитайте оценку времени воздействия.
- Избегайте усилий, которые потребляют дополнительное количество кислорода.
Лечен ие
Гипербарическая кислородная терапия включает лечение пациента со 100% кислородом в условиях супер-атмосферы. Чем раньше начинается лечение, тем лучше.
Обоснование
При вдыхании обычного воздуха период полураспада СО составляет ок. 300 минут. Если дыхание происходит с воздухом, богатым кислородом, через маску, которая отфильтровывает выдыхаемый воздух, период полураспада составляет ок. 90 минут. При 100% гипербарическом кислороде это всего лишь 30 минут. Лечение также восстанавливает оксигенацию тканей, улучшает функцию митохондрий и изменяет воспалительные реакции, вызванные СО.
Показания к применению
Время обработки
Оно обычно составляет 90-120 мин. Продолжайте лечение до тех пор, пока содержание CO-Hb не станет
Заявленное лечение предотвращает отсроченные нейрокогнитивные реакции, но результаты исследований различаются. Позаботьтесь о лечении ацидоза при рН> 7,15, поскольку ацидоз вызывает правильное смещение кривой диссоциации оксигемоглобина и увеличивает выделение кислорода в ткани. Ацидоз улучшается в связи с кислородным лечением.
Дальнейшие действия
· Пациенту следует воздержаться от тяжелой физической нагрузки следующие 2-4 недели.
· Провести повторные измерения CO-Hb и мониторинг сердца. Внезапная смерть может наступить в результате аритмии.
· Повторная ЭКГ и измерение тропонина по неопределенности в отношении повреждения миокарда.
· Особенно, если пациент страдает с сердечно-сосудистыми заболеваниями и исходные значения CO-Hb превышают 15% .
· Неврологический мониторинг, так как может возникнуть отек мозга.
· Повторные неврологические осмотры, КТ или МРТ.
Прогресс, осложнения и прогноз
При отсутствии первой помощи и квалифицированного медицинского лечения состояния пациента быстро ухудшается.
Осложнения
· Аритмия может быть вторичной по отношению к гипоксии, ишемии или инфаркту.
· Осложнения гипербарической оксигенотерапии.
· Симптомы декомпрессии, баротравмы против пазух и среднего уха, судороги, пневмоторакс, возможно, усугубляется пневмотораксом клапана, газовая эмболия, обратимые изменения зрительной рефракции.
Прогноз
Критическое отравление угарным газом смертельно. Почти 40% пациентов, которые выживают при отравлении угарным газом, получают повреждения миокарда, и подвержены высокой смертности. Снижение когнитивной функции происходит через 10-30% после тяжелого отравления угарным газом.
- IT безопасность
- О компании
- О платформе
- Связаться с нами
- Политика конфиденциальности
- Пользовательское соглашение
- Публичная оферта
- Политика использования Cookie
© 2015-2022, ООО «Семейный доктор» ОГРН 1153668014390, ИНН 3662993839
18+ Материалы, представленные на сайте med24.online, носят информационный характер и не могут быть использованы для постановки диагноза, назначения лечения и не заменяют прием врача. Компания не несёт ответственности за возможные негативные последствия, возникшие в результате использования информации, размещенной на сайте. Имеются противопоказания, необходима консультация специалиста.
Гипероксия: механизм развития, симптомы, лечение
Гипероксия - это отравление в результате потребления кислородосодержащей газовой смеси с высоким парциальным давлением кислорода (pO2).
Дабы понять, что такое гипероксия и чем она опасна, следует рассмотреть сам процесс дыхания: как он осуществляется, какие явления происходят.
Если говорить предельно просто, дыхание осуществляется следующим образом: в момент вдыхания через альвиолярнокапиллярный барьер О2 поступает в кровоток, а далее - образует связь с белком гемоглобином в эритроцитах. Эти клетки транспортируют молекулы О2 ко всем тканям организма, гемоглобин восстанавливается, отсоединяет О2, связывая СО2. Далее кровь оказывается в легких, а железосодержащий белок снова окисляется и отсоединяет О2, последний, в свою очередь, удаляется при выдохе.
Как развивается гипероксия и что происходит в организме
Хотя механизмы токсического воздействия кислорода на ткани изучен недостаточно, отмечается, что при гипероксии О2 воздействует на весь организм, и основа этого действия лежит в угнетении важнейших процессов жизнедеятельности - тканевого дыхания.
Процессы, патологические явления, вызываемые кислородным отравлением, и проникающей радиацией требуют средств защиты одинакового действия - антиокислителей.
Нарушение метаболизма кислорода, что включает нарушение процесса транспортировки газов, приводит к повреждению мембран клеток всего организма.
Первый признак отравления кислородом и поражения легких называют снижение максимального объема воздуха, который может вдохнуть человек. Обусловливается это страхом перед усилением боли за грудиной и сильным кашлем.
Также возможны небольшие ателектазы - спадение легких, что происходит по следующим причинам:
- отсутствие «опоры» газа;
- негативное влияние кислорода на стенку капилляров легких, что способствует увеличению их проницаемости;
- вымывается сурфактант - поверхностно-активное вещество, находящееся на альвеолах, что способствует увеличению поверхностного натяжения.
Отеки легких провоцируются спазмами и увеличением проницаемости капилляров при гипероксии. Так, по причине повреждающего действия кислорода для альвеолярнокапиллярной мембраны и патологии вентиляционно-перфузионных процессов ухудшается и способность легких к диффузии.
Описанные функционально-морфологические изменения в легких приводят к кислородному голоданию и вероятному летальному исходу даже в том случае, если во вдыхаемой смеси избыток кислорода, а не дефицит.
Также кислородное отравление токсически воздействует на кровеносную и кардиоваскулярную системы. Наблюдается снижение осмотической сопротивляемости красных кровяных телец, уменьшается активность лимфоцитов и нейтрофилов. Также возникают изменения на кардиограмме: уширение и деформация зубцов P, увеличение амплитуды T.
Резкое возбуждение ЦНС, перенасыщение кислородом мозга, в большей части - стволового отдела, возникают конвульсии.
Утяжеляется степень гипероксии при высокой концентрации углекислоты, ядовитых газов во вдыхаемом воздухе, а также при высокой и пониженной температуре.
Клинические формы
Выделяют 3 вида гипероксии, в зависимости от типа и формы проявлений: легочную, судорожную и сосудистую. В самом начале отмечаются такие симптомы отравления кислородом, как дрожание нижней части лица, сильная рвота, шаткость, головокружение, парестезии. Далее - конвульсии, потеря сознания, тяжелая рвота, развитие туннельного зрения и слепота.
Признаки и их выраженность вариабельны, и зависят от личных особенностей, компенсаторных возможностей и устойчивости организма к кислородной интоксикации.
Усугубляют проявления гипероксии тяжелый физический труд, пониженная температура окружающей среды, СО2 и наркотическая концентрация индифферентных газов во вдыхаемой смеси.
Преимущественно отмечаются негативные влияния на дыхательные пути, что сопровождается жжением, першением в горле, сухостью и отеком слизистой носа, сильным кашлем с болью в груди.
Поднимается температура до субфебрильных значений.
С повышением степени гипероксии возможна геморрагия.
При возвращении к нормальному кислородному дыханию выраженность симптомов гипероксии спадает и ослабевает в течение пары часов, а полностью они пропадают спустя несколько дней.
По большей части поражается ЦНС.
Кожа влажная, бледная, синюшная, либо землистая. Отмечается сонливость, вялое состояние, апатия, либо, наоборот, - эйфория и возбуждение. В некоторых случаях возникает растерянность и смятение, сменяющиеся панической атакой.
По мере повышения степени гипероксии нарушается слух, отмечается возникновение сильной рвоты со спазмами, подергивание мышц лица, обморок и судороги с последующей потерей памяти.
Хотя есть риск получения физической травмы либо утопления (у водолазов, например) судорожная форма гипероксии не дает остаточных симптомов. При переключении на дыхание нормальной газовой смесью судороги проходят спустя пару мин, пострадавший приходит в сознание. Далее он может быстро заснуть и проспать 2-3 ч, как после эпилептического припадка.
Достаточно опасная форма гипероксии.
Отмечается молниеносное расширение кровеносных сосудов с последующим резким снижением артериального давления, угнетением деятельности сердца, что делает вероятной внезапную смерть от остановки сердца.
Во внутренние органы возможны кровоизлияния.
В тяжелых случаях переизбыток кислорода в организме может привести к летальному исходу.
Симптомы
С возрастанием парциального давления кислорода и с увеличением экспозиции развиваются патологические реакции, перетекающие в типичную картину кислородного отравления. По мере увеличения парциального давления и удлинения экспозиции сначала возникают функциональные нарушения, а далее - деструктивные явления в организме.
ЦНС наиболее чувствительна к кислородной интоксикации. Существует 7 групп проявлений гипероксии со стороны нервной системы:
- Конвульсии. Это специфический признак отравления ЦНС кислородом, который возникает спонтанно, либо с предшествующими «стертыми» симптомами.
- Тошнота. Возможна рвота, сопровождающаяся сильными спазмами.
- Зрительные нарушения. Ухудшение периферического зрения, субъективное ощущение помутнения в глазах.
- Головокружение. Сопровождается пошатываниями, нарушениями координации, вялостью.
- Слуховые симптомы. Субъективное ощущение шума в ушах.
- Парестезии и тики. Первые симптомы гипероксии, которых, впрочем, может и не быть.
- Ментальные изменения. Раздражительность, растерянность, замешательство, нарастающее чувство паники.
Хотя в большинстве случаев кислородное отравление начинает проявлять себя парестезиями (онемение конечностей), тиками лица и ощущением тревоги, в некоторых случаях таких проявлений может и не быть, либо предсудорожная аура быстро переходит в судороги и обморок. Последние иногда наступают абсолютно внезапно. Причиной тому может стать очень быстрое повышение pO2 газовой смеси.
Как помочь пострадавшему
При развитии гипероксии во время подводных работ следует сразу приостановить деятельность и обеспечить перемещение человека на оптимальную глубину спуска.
При кислородном отравлении, развившимся в барокамере, следует как можно быстрее перевести человека на потребление обычного воздуха либо бедной кислородом газовой смесью. Если возникли судороги, следует держать, защищая от физических травм.
Лечение
Главный принцип лечения гипероксии - восстановление оптимального кислородного режима пострадавшего.
При легочной форме кислородного отравления показаны препараты, уменьшающие гидратацию легких, а также противовоспалительные средства.
При судорожном кислородном отравлении необходим покой в палате с комфортной температурой, а также постоянное наблюдение для контроля возобновления приступов. В наиболее тяжелых случаях показано введение агуахлорала, димедрола, седуксена.
Профилактика
Дабы предупредить развитие гипероксии, следует строго придерживаться следующих правил:
- При спусках на нитроксах (газовая смесь для подводных погружений) строго запрещается повышать допустимую глубину.
- Не следует превышать оптимальное время работы на глубине при использовании аппаратов с подачей газовой смеси через шланг.
- При осуществлении процедур в барокамере не следует превышать установленное время.
- Регенеративные аппараты требуют безукоризненного мониторинга технического состояния.
Не следует паниковать. Необходимо обеспечить пострадавшему безопасность, поспособствовать его быстрому восстановлению, придерживаться мер безопасности, дабы предупредить переход физреакций на кислородное отравление в патологию.
Оксигемоглобин: понятие, роль, образование, кривая диссоциации
Красный пигмент крови человека, сложный железосодержащий белок (хромопротеин, состоящий из глобина и четырех гемов с двухвалентным железом в центре каждого) - гемоглобин (Hb), соединяясь с молекулярным кислородом (O2) в легких, образует оксигенированную форму - оксигемоглобин (HHbO2). Оксигемоглобин, приобретая уникальные свойства и обеспечивая дыхание, как одно из элементарных проявлений жизни, продолжает саму жизнь организма. Например, достаточно ввести окись углерода вместо кислорода или нарушить потребление О2 клетками при попадании цианидов (солей синильной кислоты), которые ингибируют ферментные системы тканевого дыхания, как тут же наступает гибель организма.
Дыхание, на первый взгляд, кажется совсем простым процессом. Между тем, оно основано на взаимодействии многих компонентов, составляющих гигантскую молекулу красного пигмента крови - хромопротеина гемоглобина, который, в свою очередь, отличается многообразием производных, где из их числа несомненный интерес вызывает оксигемоглобин. Итак, оксигемоглобин образуется в легких путем соединения сложного железосодержащего белка гемоглобина с кислородом, поступающим с вдыхаемым воздухом.
Образование и распад оксигемоглобина
В спокойном состоянии тканям человеческого тела достаточно около 0,2 л кислорода в одну минуту, но все меняется при физической нагрузке и чем она интенсивнее, тем больше необходимого для дыхания газа запрашивают ткани. Для удовлетворения их нужд потребность в кислороде может увеличиваться в 10 - 15 раз и составлять до 2, а то и 3 литров О2 в одну минуту. Однако газообразный кислород в данном количестве никак не сможет пробраться в ткани, поскольку он почти не растворим и в воде, и в плазме, то есть, этот элемент в ткани должен доставить какой-то белок, способный соединиться с ним и решить задачу транспорта.
Кровь, как биологическая среда, реализует свои функциональные обязанности по обеспечению дыхания за счет присутствия в ней сложного содержащего железо протеина - гемоглобина, физиологическая роль которого, как транспортного средства кислорода, базируется на способности Hb связывать и отдавать О2 в корреляции с концентрацией (парциальным давлением - P) данного газа в крови. Образование оксигемоглобина осуществляется в паренхиме легких, куда кислород прибывает при дыхании из воздуха окружающей среды.
Процесс образования HHbO2 происходит в доли секунды (0,01 с), поскольку кровь в легких задерживается всего-то на полсекунды. Схематично и коротко образование оксигемоглобина можно представить в следующем виде:
- Попадая в капиллярные сосуды легких, кровь обогащается кислородом, то есть, красный кровяной пигмент к своим 4 гемам присоединяет кислород - идет реакция окисления (оксигенации);
- Кислород связывается с гемами хромопротеина при помощи координационных связей феррума (железо - Fe) и, не изменяя в данном случае валентности последнего (в геме валентность железа всегда - II), переводит его (Hb) в несколько иное состояние;
- Гем железосодержащего протеина представляет собой активный центр, с его помощью хромопротеин в результате вышеуказанной реакции переходит в непрочный комплекс - оксигенированный гемоглобин (HHbO2), который, находясь в красных кровяных тельцах - эритроцитах, с током крови доставляется к клеткам тканей, чтобы через распад оксигемоглобина и выделения в процессе диссоциации кислорода, обеспечить их дыхание.
Таким образом, результатом реакции оксигенации становится образование оксигемоглобина, подкисление биологической жидкости, снижение ее щелочного резерва, то есть, ее умения связывать углекислоту (СО2), которое, разумеется, на тот момент снижается.
Железосодержащий протеин, насытившись в легочной паренхиме кислородом и приобретя оксигенированную форму, уносит О2 к тканям, в капиллярных сосудах которых его концентрация в крови резко понижена. Там происходит распад оксигемоглобина (диссоциация), кислород уходит на тканевое дыхание, гемоглобин забирает отработанный углекислый газ, превращаясь в другую физиологическую модель - карбогемоглобин (HHbCO2), и в этом качестве отправляется в главный орган дыхания, чтобы обменять CO2 на очередную порцию необходимого организму газа.
Кривая образования и распада (диссоциации) оксигемоглобина
Агентом, гарантирующим быстрое насыщение железосодержащего белка кислородом (образование оксигемоглобина), выступает высокое напряжение (парциальное давление) О2 в легочных альвеолах (порядка 100 мм рт. ст.).
Корреляцию между степенью насыщения красного кровяного пигмента кислородом и парциальным давлением O2 (PO 2) выражают в виде S-образной кривой (сигмоиды), которую называют кривой диссоциации оксигемоглобина.
Свойственная красному кровяному пигменту S-образная (сигмоида) кривая диссоциации оксигемоглобина свидетельствует о том, что контактирование первой молекулы О2 с одним из гемов Hb открывает путь присоединению других молекул элемента остальными тремя гемами. Кривой насыщения железосодержащего белка кислородом принадлежит немалая физиологическая значимость - S-образная конфигурация позволяет крови обогатиться данным газом при изменениях концентрации кислорода в биологической жидкости в довольно обширных интервалах. К примеру, не следует ожидать таких особенных расстройств дыхательной функции крови, как выраженное кислородное голодание (гипоксия), при подъеме на высоту до 3,5 км над уровнем моря или во время перелета на самолете. Хотя PO 2 во вдыхаемом воздухе сильно понизится, концентрация кислорода в крови будет находиться на достаточно высоком уровне, чтобы обеспечить насыщение Hb данным газом. На это указывает и отлогий график формирования и распада оксигемоглобина на верхнем его отрезке (верхний отрезок кривой свидетельствует о течении процесса насыщения О2 красного пигмента крови в легочной паренхиме и находится в пределах 75 - 98%).
Кривая диссоциации оксигемоглобина может быть разделена на 4 отрезка, каждому их которых соответствует определенный период образования оксигемоглобина (зависимость скорости насыщения хромопротеина кислородом от парциального давления газа в крови):
- 0 - 10 мм рт. ст. - гемоглобин не спешит насыщаться;
- 10 - 40 мм рт. ст. - оксигенация резко ускоряется (стремительный подъем кривой), доходя до 75%;
- 40 - 60 мм рт. ст. - оксигенация заметно замедляется, потихоньку добираясь до 90%;
- Значения PO2 пересекают отметку 60 мм рт. ст. - насыщение идет слабо (линия лениво ползет вверх). Однако кривая медленно продолжает стремиться к отметке 100%, но, так и не достигнув ее, останавливается на уровне 96 - 98%. Кстати, и такие показатели насыщения Hb кислородом отмечаются только у молодых и здоровых людей (PO2 артериальной крови ≈ 95 мм рт. ст., легочных капилляров - ≈ 100 мм рт. ст.). С возрастом дыхательные способности крови снижаются.
Несовпадение парциального давления кислорода артериальной крови и смеси газов в альвеолах легких трактуется:
- Некоторыми разногласиями между интенсивностью тока крови и вентилированием разных отделов главного органа дыхания - легких;
- Притоком незначительного объема крови из бронхиальных вен в венозные сосуды легких (шунтирование), где, как известно, течет артериальная кровь;
- Прибытием доли крови из коронарных вен в левый желудочек сердца посредством тебезиевых вен (вены Тебезия-Вьессена), в которых проходимость возможна в обоих направлениях.
Между тем, причины, вследствие которых кривая образования и диссоциации оксигемоглобина приобрела сигмоидную форму, пока остаются не до конца выясненными.
Смещение кривой диссоциации оксигемоглобина
Но кривая диссоциации оксигемоглобина, о которой идет речь выше, справедлива, если в организме все нормально. В других ситуациях график может сдвигаться в ту или иную сторону.
В числовом выражении сродство гемоглобина к кислороду обозначается величиной P50 - напряжение полунасыщения красного пигмента крови кислородом или иными словами: парциальное напряжение О2, при котором 50% Hb пребывает в форме оксигемоглобина (оптимальные условия: рН - 7,4, tº - 37ºC). Нормальные значения этого показателя в артериальной крови приближаются к величине 34,67 гПа (26 мм рт. ст.). Смещение графика вправо указывает на то, что способность красного кровяного пигмента соединяться с кислородом снижается, что, естественно, увеличивает значения P50. И, наоборот - смещение кривой влево говорит об увеличении сродства этого хромопротеина к кислороду (↓P50.).
Ходу сигмоиды помогают некоторые факторы, повышающие обогащение крови кислородом и таким образом участвующие в тканевом дыхании, поэтому названные вспомогательными:
- Повышение водородного показателя (pH) крови (эффект Бора), поскольку способность гемоглобина присоединять кислород связана с водородным показателем (pH) данной биологической среды (гемоглобин представляет одну из четырех буферных систем и влияет на регуляцию кислотно-основного баланса, поддерживая pH на нужном уровне: 7,36 - 7,4). Следовательно, чем выше водородный показатель, тем активнее ведет себя гемоглобин в отношении кислорода и наоборот - снижение pH отнимает возможности хромопротеина присоединять кислород, например: ↓pH до 7,2 заставит график отклоняться вправо (≈ на 15%), ↑pH до 7,6 передвинет кривую диссоциации оксигемоглобина влево (≈ на 15%);
- Отделение углекислого газа от карбогемоглобина в легких и выход СО2 с выдыхаемым воздухом (эффект Бора-Вериго) на фоне повышения водородного показателя создает условия для жадного насыщения гемоглобина кислородом (образование оксигемоглобина в легких);
- Возрастание уровня значимого для обмена фосфата - 2,3-дифосфоглицерата (2,3-ДФГ), содержание которого в крови меняется в зависимости от условий протекания обменных процессов;
- Снижение температуры в легких (в тканях она выше, нежели в легких) и чем ниже упадет tº, тем больше способностей присоединять кислород появляется у железосодержащего белка (при повышении температуры идет обратный эффект).
Уровень красного пигмента в крови, а также его способность присоединять кислород (кривая диссоциации оксигемоглобина) в некоторой степени подвержены возрастным колебаниям. Так, у младенцев, только-только известившим мир о своем появлении первым криком, количество гемоглобина заметно выше, что объясняется присутствием фетального гемоглобина, который, как известно, обладает повышенным сродством к кислороду. Красный пигмент крови стариков, напротив, постепенно снижает способности связывать кислород.
В заключение хочется заметить, что гемоглобин не только имеет сродство к кислороду и довольно легко соединяется с углекислым газом. Кроме физиологических соединений красного кровяного пигмента при определенных условиях возникают связи с другими газами, в частности - с угарным газом (CO) и оксидом азота (NO), причем соединение происходит также непринужденно
Высокое сродство Hb к угарному газу влечет образование карбоксигемоглобина (HHbCO), который препятствует соединению хромопротеина с кислородом, а в результате этого ткани остаются без O2. К чему это может привести - всем известно: при отравлении угарным газом высок риск смертельного исхода, если вовремя не помочь человеку.
При отравлении оксидом азота или парами нитробензола гемоглобин переходит в метгемоглобин (HHbOH) с изменением валентности железа (II → III). Метгемоглобин также не позволяет кислороду соединиться с гемоглобином, в итоге - наступает кислородное голодание тканей, создается угроза жизни организма.
Гиперкапния и гипоксемия: признаки, возникновение, диагностика, как лечить
Много раз мы слышали, как вредно находиться в помещении с повышенным уровнем углекислого газа и как важно нормальное содержание кислорода в воздухе, которым мы дышим. Вместе с тем, всем известно, что кислород в организм должен попадать бесперебойно и в достаточном количестве, в противном случае снижение кислорода в крови (гипоксемия) и накопление углекислого газа (гиперкапния) приводят к развитию состояния, называемого гипоксией. И коль гипоксия имеет место, то уже ясно, что без гиперкапнии и гипоксемии тоже не обошлось, поэтому их считают универсальными симптомами дыхательной недостаточности (ДН).
Различают две формы острой дыхательной недостаточности: гиперкапническую, обусловленную повышенным уровнем углекислого газа, и гипоксемическую форму ОДН, когда проблемы возникают вследствие низкой оксигенации артериальной крови. Для острой дыхательной недостаточности характерно и то, и другое: и повышенная концентрация углекислого газа, и низкое содержание кислорода, то есть, и гиперкапния, и гипоксемия, но все же их нужно отделять друг от друга и разграничивать при выборе методов лечения, которые хоть, в принципе, и похожи, но могут иметь свои особенности.
Свято место пусто не бывает
Гиперкапния - повышение уровня углекислого газа (СО2) в крови, гипоксемия - снижение содержания кислорода (О2) там же. Как и почему это происходит?
Известно, что транспорт кислорода из легких с артериальной кровью осуществляют красные кровяные тельца (эритроциты), где кислород находится в связанном (но не очень прочно) с хромопротеином (гемоглобином) состоянии. Гемоглобин (Hb), несущий кислород к тканям (оксигемоглобин), по прибытию на место назначения отдает О2 и становится восстановленным гемоглобином (дезоксигемоглобин), способным присоединять к себе тот же кислород, углекислый газ, воду. Но так как в тканях его уже ждет углекислый газ, который нужно с венозной кровью доставить в легкие для выведения из организма, то гемоглобин его и забирает, превращаясь в карбогемоглобин (HbСО2) - тоже непрочное соединение. Карбогемоглобин в легких распадется на Hb, способный соединиться с кислородом, поступившим при вдохе, и углекислый газ, предназначенный для вывода из организма при выдохе.
Схематично эти реакции можно представить в виде химических реакций, которые, возможно, читатель хорошо помнит еще из школьных уроков:
- Hb (в эритроцитах) + О2 (приходит при вдохе с воздухом) → HbО2 - реакция идет в легких, полученное соединение направляется в ткани;
- HbО2 → Hb (дезоксигемоглобин) + О2 - в тканях, которые получают кислород для дыхания;
- Hb + СО2 (отработанный, из тканей) → HbСО2 (карбогемоглобин) - в тканях, образованный карбогемоглобин направляется в малый круг для газообмена и обогащения кислородом;
- HbСО2 (из тканей) → в легкие: Hb (свободен для получения кислорода) + СО2↑ (удаляется с выдохом);
- Hb + О2 (из вдыхаемого воздуха) - новый цикл.
Однако следует отметить, что все так хорошо получается, когда кислорода хватает, избытка углекислого газа нет, с легкими все в порядке - организм дышит чистым воздухом, ткани получают все, что им положено, кислородного голодания не испытывают, образованный в процессе газообмена СО2 благополучно покидает организм. Из схемы видно, что восстановленный гемоглобин (Hb), не имея прочных связей, всегда готов присоединить любой из компонентов (что попадается, то и присоединяет). Если в легких на тот момент окажется кислорода меньше, чем может забрать гемоглобин (гипоксемия), а углекислого газа будет более, чем достаточно (гиперкапния), то он заберет его (СО2) и понесет к тканям с артериальной кровью (артериальная гипоксемия) вместо ожидаемого кислорода. Пониженная оксигенация тканей - прямой путь к развитию гипоксии, то есть, кислородному голоданию тканей.
Очевидно, что трудно разделить такие симптомы, как гипоксия, гиперкапния и гипоксемия - они лежат в основе развития острой дыхательной недостаточности и определяют клиническую картину ОДН.
Тесные связи
Привести ткани к кислородному голоданию могут различные причинные факторы, однако, учитывая неразрывную связь гипоксии, гиперкапнии и гипоксемии, эти категории целесообразно рассматривать, не отрывая друг от друга, тогда читателю будет понятно, что из чего вытекает.
Итак, гипоксию по ее происхождению делят на две группы:
Экзогенная гипоксия - кислородное голодание, возникающее вследствие снижения парциального давления О2 в воздухе, который мы вдыхаем и, соответственно, к недостаточному насыщению артериальной крови кислородом (менее 96% - гипоксемия). Такая форма гипоксии хорошо известна любителям полетов на больших высотах, покорения высоких гор, а также лицам, чья профессия связана с различными системами, обеспечивающими дыхание в необычных условиях (акваланг, барокамера), или людям, случайно попавшим в зону сильного загрязнения атмосферы вредными для человека газообразными веществами.
- Респираторную гипоксию, формирующуюся в результате альвеолярной гиповентиляции, которая возникает при различных обстоятельствах: травмах грудной клетки, непроходимости дыхательных путей, уменьшении поверхности легких, осуществляющих дыхательную деятельность, угнетении дыхательного центра, например, лекарственными средствами, воспалительных процессах и отеке легких. Это - различные заболевания органов дыхания: пневмония, эмфизема, пневмосклероз, ХОБЛ (хроническая обструктивная болезнь легких), а также поражение органов дыхания агрессивными ядами: фосгеном, аммиаком, сильными неорганическими кислотами (соляная, серная) и др.;
- Циркуляторную форму, в основе которой лежит острая и хроническая недостаточность системы кровообращения (врожденные пороки сердца, при которых венозная кровь, не заходя в малый круг кровообращения, попадает в левые отделы сердца, что случается, например, при открытом овальном окне);
- Тканевой вариант гипоксии, который имеет при отравлениях, затормаживающих передачу тканям кислорода, поскольку из-за подавления функциональной активности дыхательных ферментов те перестают его принимать и усваивать;
- Гемическую (кровяную) гипоксию - результат уменьшения в циркулирующей крови красных кровяных телец (эритроцитов) или снижения уровня красного пигмента (гемоглобина), связывающего кислород. Такая форма, как правило, характерна для различного рода анемичных состояний (острая кровопотеря, ЖДА, гемолитические анемии).
Тяжелую форму гипоксии легко отличить по таким признакам, как цианоз, учащенное сердцебиение, снижение артериального давления, возможны судороги и потеря сознания, что чревато быстрым развитием сердечно-сосудистой недостаточности, которая, если немедленно не ликвидировать первопричину, так же быстро может привести к гибели больного.
Излишнее накопление делает этот газ вредным для организма
В основе развития гиперкапнии находится нарушение соотношения между альвеолярной вентиляцией и накоплением СО2 в тканях и в крови (HbСО2) (показатель этого накопления - РаСО2, который в норме не должен превышать 45 мм. рт. ст.).
К гиперкапнии приводят следующие обстоятельства:
- Расстройства вентиляции, вызванные патологическим состоянием органов дыхания (обструкция) или нарушения, формируемые самим пациентом при попытке снизить дыхательный объем за счет глубины дыхания, поскольку вдох вызывает дополнительные болевые ощущения (травмы грудной клетки, операции на органах брюшной полости и др.);
- Угнетение дыхательного центра и нарушение регуляции в результате этого (травмы, опухоли, отек головного мозга, деструктивные изменения в тканях ГМ, отравление отдельными лекарственными средствами);
- Ослабление мышечного тонуса грудной клетки в результате патологических изменений.
Таким образам, к причинам возникновения гиперкапнии относят:
- ХОБЛ;
- Ацидоз;
- Инфекции бронхо-легочной системы;
- Атеросклероз;
- Профессиональную деятельность (пекари, сталевары, водолазы);
- Загрязнение воздуха, длительное пребывание в непроветриваемых помещениях, курение, в том числе, и пассивное.
рисунок: уровень углекислого газа в помещении и влияние на человека
Признаки увеличения в крови концентрации двуокиси углерода:
- Увеличивается частота сердечных сокращений;
- Проблема - уснуть ночью, зато сонливость днем;
- Кружится и болит голова;
- Тошнит, иной раз доходит до рвоты;
- Повышается внутричерепное давление, возможно развитие отека ГМ;
- Стремится вверх артериальное давление;
- Трудно дышать (одышка);
- Болит в груди.
При быстром увеличении содержания углекислого газа в крови существует опасность развития гиперкапнической комы, которая, в свою очередь, грозит остановкой дыхания и сердечной деятельности.
Факторы, тормозящие оксигенацию
Основу гипоксемии составляет расстройство насыщения кислородом артериальной крови в легких. Узнать, что в легких кровь не оксигенируется можно по такому показателю, как парциальное напряжение кислорода (РаО2), значения которого в норме не должны опускаться ниже 80 мм. рт. ст.
Причинами снижения оксигенации крови являются:
- Альвеолярная гиповентиляция, возникающая в результате влияния различных факторов, в первую очередь, недостатка кислорода во вдыхаемом воздухе, что влечет его снижение в альвеолах и приводит к развитию экзогенной гипоксии;
- Расстройство вентиляционно-перфузионных соотношений, возникающих при хронических заболеваниях легких - это самый частый причинный фактор развития гипоксемии и респираторной гипоксии;
- Шунтирование справа налево при нарушении кровообращения и попадании венозной крови сразу в левое сердце без посещения легких (пороки сердца) с развитием циркуляторной гипоксии;
- Нарушение диффузных способностей альвеолярно-капиллярной мембраны.
Чтобы читатель мог представить роль вентиляционно-перфузионных отношения и значение диффузных способностей альвеолярно - капиллярной мембраны, следует разъяснить суть данных понятий.
Что происходит в легких?
В легких человека газообмен обеспечивается вентиляцией и током крови по малому кругу, однако вентиляция и перфузия происходит не в равной степени. К примеру, отдельные зоны вентилируются, но не обеспечиваются кровью, то есть, в газообмене не участвуют или, наоборот, на каких-то участках кровоток сохранен, но они не вентилируются и тоже исключены из процесса газообмена (альвеолы верхушек легких). Расширение зон, не участвующих в газообмене (отсутствие перфузии), приводит к гипоксемии, которая чуть позже повлечет за собой и гиперкапнию.
Нарушение легочного кровотока вытекает из различных патологических состояний жизненно важных органов и, в первую очередь - кровеносной системы, которые становятся причинами гипоксемии:
пример развития гипоксемии при ТЭЛА
Диффузная способность альвеолярно-капиллярной мембраны, зависящая от многих параметров, может менять свои значения (увеличиваться и уменьшаться) в зависимости от обстоятельств (компенсаторно-приспособительные механизмы при нагрузке, изменении положения тела и др.). У людей взрослых молодых людей (за 20 лет) она снижается естественным образом, что считается физиологическим процессом. Чрезмерное уменьшение этого показателя наблюдается при заболеваниях органов дыхания (воспаление легких, отек, ХОБЛ, эмфизема), которые значительно снижают диффузионную способность АКМ (газы не могут преодолеть длинные пути, образованные в результате патологических изменений, а кровоток нарушается из-за уменьшения количества капилляров). По причине подобных нарушений начинают проявляться основные признаки гипоксии, гипоксемии и гиперкапнии, указывающие на развитие дыхательной недостаточности.
Признаки снижения О2 в крови
Признаки снижения кислорода могут проявиться быстро (концентрация кислорода падает, но организм пытается компенсировать потерю собственными силами) или запаздывать (на фоне хронической патологии основных систем жизнеобеспечения, компенсаторные возможности которых уже закончились).
- Синюшность кожных покровов (цианоз). Цвет кожи определяет тяжесть состояния, поэтому при слабой степени гипоксемии до цианоза обычно не доходит, но бледность, тем не менее, имеет место;
- Учащенное сердцебиение (тахикардия) - сердце пытается компенсировать недостаток кислорода;
- Снижение артериального давления (артериальная гипотензия);
- Обморочные состояния, если РаО2 падает до очень низких значений (менее 30 мм.рт. ст.)
Снижение концентрации кислорода в крови, конечно, ведет к страданиям головного мозга с нарушением памяти, ослаблением концентрации внимания, расстройствам сна (ночное апноэ и его последствия), развитием синдрома хронической усталости.
Небольшая разница в лечении
Гиперкапния и гипоксемия настолько тесно связаны между собой, что разобраться в лечении может только специалист, который проводит его под контролем лабораторных показателей газового состава крови. Общим в лечении этих состояний являются:
- Вдыхание кислорода (оксигенотерапия), чаще газовой смеси обогащенной кислородом (дозы и методы подбираются врачом с учетом причины, вида гипоксии, тяжести состояния);
- ИВЛ (искусственная вентиляция легких) - в тяжелых случаях при отсутствии сознания у больного (кома);
- По показаниям - антибиотики, препараты, расширяющие бронхи, отхаркивающие лекарственные средства, диуретики.
- В зависимости от состояния больного - ЛФК, массаж грудной клетки.
При лечении гипоксии, вызванной снижением концентрации кислорода, или повышением содержания углекислого газа нельзя забывать о причинах, повлекших данные состояния. По возможности стараются устранить их или хотя бы минимизировать влияние негативных факторов.
Что такое кислородное отравление? Возможно ли оно при использовании концентратора кислорода?
Понятие гипоксия знакомо многим людям. Так называют острую нехватку кислорода вследствие которой наступают разные органические нарушения. Особенно опасна гипоксия в младенческом возрасте. Для лечения гипоксии используют кислородные концентраторы. Эти устройства помогают восполнить нехватку кислорода. Показаны такие устройства и при других проблемах. Например, ХОБЛ или апноэ.
Есть и обратное явление — отравление кислородом. Его называют гипероксия. Она опасна и может привести к летальному исходу. Особенно ей подвержены водолазы и подводники. Причина гипероксии — вдыхание большого количества кислорода.
Почему развивается гипероксия
Для понимания механизма возникновения кислородного отравления нужно понимать, как именно человек дышит. Так, вместе с вдохом воздух попадает в легкие и через мембрану кислород связывается с гемоглобином, в частности с эритроцитами. Именно они переносят кислород к органам, тканям, клеткам.
Следующий этап — вывод углекислого газа. Для этого эритроциты отдают кислород и забирают углекислый газ. Потом углекислый газ попадает в легкие и выходит вместе с выдохом.
При этом интенсивность насыщения крови зависит от физических законов. Так, если будет увеличена насыщенность кислородом, то переносить его будет не только гемоглобин. Из-за этого внутренние системы терпят перегрузку.
Основная проблема перенасыщения кислорода в том, увеличивается процент окисленного гемоглобина, а восстановленного — уменьшается. Из-за дисбаланса возникает задержка углекислого газа в крови — гиперкапнии. Уже она вызывает ряд симптомов.
Из-за повышенного количества кислорода разрушаются клеточные мембраны. Особенность отравления кислородом — отсутствие инкубационного периода. Никакие симптомы не будут скрытыми. Они сразу проявятся. Все дело в том, что биохимические нарушения начинаются сразу.
Увеличивают вероятность развития гипероксии следующие факторы:
- физические нагрузки;
- переохлаждение;
- перегревание;
- вредные газы;
- хронические заболвания;
- индивидуальные особенности.
Если не принять срочные меры — все может закончиться печально. В ходе испытаний врачам удалось установить основные формы проявления отравления и сопутствующие симптомы. Так, при нахождении в барокамере на протяжении полутора часов при давлении на 27 м — появилась слепота и тяжелая рвота. Даже после 10 минут нахождения у людей отмечались нарушения. Например, парестезия — спонтанные ощущения покалывания или жжения, тошнота, головокружение, дрожание губ.
У лиц, которые работают водолазами или на подводной лодке риск возникновения кислородного отравления выше. Все дело в давлении. Также строго ограничивается время дыхания чистым кислородом. Иногда проблемы возникают в следствие неисправности аппаратов или попадания в смесь воды.
При появлении первых признаков отравления водолаз обязан дать сигнал остальным членам команды и уменьшить глубину спуска, после чего остановится. Если человек находится в кислородной камере, то сразу переключается на дыхание воздухом или обедненной кислородом смесью.
Для предупреждения развития кислородного отравления нужно соблюдать меры безопасности. Во-первых, при погружении не стоит рисковать и заходить глубоко. Во-вторых, при использовании разных смесей — маркируют баллоны. Важно следить за ними и чередовать их. В-третьих, при использовании аппарата с подачей кислорода по шлангу — не превышать допустимую глубину.
Формы кислородного отравления
Все симптомы можно разделить на три группы: легочная, судорожная, сосудистая. Каждая из них смертельно опасна и требует незамедлительной помощи врача. Также важно правильно определять первые симптомы нарушения, чтобы предотвратить обострение.
Легочная форма возникает при длительном дыхании смесью с давлением больше 1,3 бар. Проявляется сначала тем, что возникает сухость во рту. Иногда формируется чувство заложенности носа и отек. Вместе с этим нарастает температура тела. Потом присоединяется кашель с болью в груди.
Если при легочной форме не убрать фактор перенасыщения, то начнется кровоизлияние во внутренние органы. Например, печень, легкие, мозг. Если убрать перенасыщение, то симптомы начинают спадать в течение нескольких часов. Полностью проблемы исчезнут через несколько дней.
Если добавить смесь давлением от 2 бар, то возникает судорожная форма. Она поражает нервную систему. Сначала отмечается побледнение кожных покровов, потливость, сонливость, нарушения зрения. Вместе с этим развиваются нарушения сознания. Это безучастность к происходящему или эйфория.
При увеличении отравления человек испытывает сильную рвоту, мышечные тики, оглушение, судороги, потеря сознания. Приступы будут повторяться и возникает риск смерти от остановки дыхания. При прекращении избыточного поступления кислорода судороги останавливаются. Человек может проспать как после припадка эпилепсии. При этом приступ не оставит после себя симптомы.
Сосудистая форма кислородного отравления развивается в следствии давления кислорода больше 3 бар. Из-за этого кровеносные сосуды резко расширяются. Артериальное давление резко падает и нарушается работа сердца. Проявляются нарушения в виде массивных кровоизлияний в кожу и слизистые оболочки. Наблюдаться они могут и на внутренних органах. При резком падении артериального давления возможна остановка сердца.
Основные симптомы кислородного отравления
- Конвульсии. Начинаются спонтанно и неожиданно. Могут быть разными по продолжительности.
- Зрительные нарушения. Например, при туннельном зрении значительно сужается поле. Человек словно видит мир через "трубку". Иногда отмечается замутненность или другие проблемы.
- Слуховые нарушения. Любые звуки не из внешней среды. Например, гул, звон, писк.
- Тошнота. Иногда переходит в рвоту. Может отмечаться разная интенсивность приступов.
- Ощущения. Обычно это подергивание или покалывание. Бывает в разных частях тела. Например, губах, веках или руках.
- Головокружения. Проявляется в виде сбоев в координации движений, а также усталости, неточности действий. Может различаться по интенсивности.
Первые признаки кислородного отравления:
- онемение;
- дрожание губ или век;
- беспокойство.
Помните, что симптомы нарастают стремительно и переходят в судороги, а также потерю сознания. Поэтому при появлении хоть одного из симптомов нужно незамедлительно оказать первую помощь.
Если давление кислорода будет стремительно нарастать, то отравление сразу выльется в потерю сознания. В этом случае нужно прекратить его подачу и дать человеку прийти в себя. Нежелательно его тормошить.
Первая помощь
Если отмечаются признаки кислородного отравления, то первое, что нужно сделать — прекратить подачу обогащенной смеси. Достаточно обычного воздуха для дыхания.
Желательно поместить человека в теплое темное проветриваемое помещение. Он должен лежать и сохранять покой в течение суток. В тяжелых случаях нужен стационар.
Помните, что не нужно самостоятельно назначать лекарства. Если после кислородного отравления человек пришел в себя — ему противопоказаны физические нагрузки. Не заставляйте его ходить или активно дышать. Лучшее решение — постельный режим.
Опасны ли кислородные концентраторы?
Многие берут в аренду кислородные концентраторы для домашнего использования. Например, приготовления специальных коктейлей или прохождение реабилитации после некоторых болезней. С помощью аппарата легко восполнить недостаток кислорода.
Но для безопасного использования концентратора важно правильно его использовать. Для этого нужно следовать рекомендациям врача и не превышать лечебную дозу. Еще важно использовать только надежные и исправные аппараты.
Особенность работы кислородного аппарата — контролирование скорости подачи кислорода. К тому же он очищенный и увлаженный, что делает его особенно полезным. Поэтому можно не бояться надышаться высокой концентрацией.
При лечении в домашних условиях нужно следить за своим состоянием. Если появятся признаки недомогания, то стоит прекратить кислородотерапию. Завершать курс тоже нужно постепенно.
В домашних условиях получить кислородное отравление почти невозможно. Это болезнь подводников и водолазов, но не простых людей. Поэтому можно не бояться использовать кислородные концентраторы для лечения.
Также не стоит пытаться увеличить потребление кислорода самостоятельно. Оптимально — не больше трех литров в минуту. Большую скорость может выдержать только посредством тренировок. Например, на это способны профессиональные пловцы. При этом период ограничен 10 минутами.
Для водолазов важен постепенный выход с глубины. Важно использовать декомпрессию. Еще важно учитывать, что при активной физической работе увеличивается потребление кислорода.
Люди из группы риска проходят длительные физические тренировки. Это повышает выносливость и улучшает работу дыхательной системы. Благодаря этому немного улучшается восприимчивость к большим объемам кислорода.
Можно проводить дыхательную гимнастику. Она тоже направлена на развитие дыхательной системы. С ее помощью получится насыщать кровь кислородом, что особенно важно при жизни в городе.
Возможно ли беспричинное развитие кислородного отравления?
В бытовых условиях — точно нет. Обычный воздух не содержит такого большого количества кислорода. Поэтому можно не бояться приступа. Даже если назначено длительное лечение с использованием кислородного концентратора — переживать не о чем.
В группу риска входят те, кто использует кислородные баллоны и погружается под воду. Если вы занимаетесь дайвингом, то нужно правильно готовиться к погружению и соблюдать технику безопасности. Не стоит сразу переходить к большим глубинам — это увеличит нагрузку на все органы.
Риск получить кислородное отравление есть у тех, кто находится в барокамере. Ее используют для лечения ряда заболеваний, а также для тренировки космонавтов, парашютистов, альпинистов и других. При этом важно чтобы тренировки проходили строго под контролем специалистов.
Если в барокамере начинает ухудшаться состояние, то подача кислорода сразу останавливается. После чего человеку оказывается первая помощь. В барокамере есть возможность контроля над всеми показателями организма.
Читайте также: