Что помогает эволюционировать вирусам
Эволюция и генетическая изменчивость вирусов. Лекарственная устойчивость ВИЧ. Рекомбинация вирусов гриппа.
Ключевые моменты:
Введение
Задумывались ли вы, почему каждый год появляется новый штамм вируса гриппа? Или как ВИЧ, вирус, вызывающий СПИД, может стать лекарственно устойчивым?
Что такое эволюция?
Эволюция - это изменение генофонда и / или наследственных признаков популяции с течением времени.
Естественный отбор - это механизм эволюции, при котором наследуемые признаки, которые помогают организмам выживать и размножаться (в нынешних условиях), с течением времени становятся все более распространенными среди популяции. Естественный отбор может позволить популяции адаптироваться или стать более приспособленной к окружающей среде.
Вирусы эволюционируют (посредством естественного отбора и других механизмов) так же, как и клеточные организмы. Посетите тему эволюции, чтобы узнать больше об эволюции и естественном отборе.
Мало того, что вирусы эволюционируют, но они также и имеют тенденцию эволюционировать быстрее, чем их хозяева, например, быстрее чем люди. Это делает эволюцию вируса важной темой - не только для биологов, изучающих вирусы, но также для врачей, медсестер и работников здравоохранения, а также для всех, кто может быть подвержен воздействию вируса. (Подсказка: для всех нас!)
Изменчивость у вирусов
Естественный отбор начинает работать только тогда, когда у него есть правильный исходный материал: генетическая изменчивость. Понятие генетической изменчивости означает появление некоторых генетических (наследственных) различий в популяции. У вирусов есть два основных источника изменчивости [1]:
- Рекомбинация: вирусы обмениваются кусками генетического материала (ДНК или РНК).
- Случайные мутации: происходит изменение в последовательности ДНК или РНК вируса.
Что такое ДНК и РНК?
Отличный вопрос! ДНК – это сокращение обозначающее дезоксирибонуклеиновую кислоту, а РНК обозначает рибонуклеиновую кислоту.
Вы можете узнать больше о ДНК и РНК в нашем курсе о нуклеиновых кислотах.
Мы можем видеть изменения и эволюцию вирусов вокруг нас, если мы знаем, где искать, например, в новых штаммах гриппа, которые появляются каждый год.
Смешивание: рекомбинация
Прежде чем мы рассмотрим конкретно вирус гриппа, давайте рассмотрим, как вирусы обмениваются ДНК и РНК в процессе, называемом рекомбинацией.
Обычно рекомбинация происходит, когда два вируса заражают одну и ту же клетку одновременно. Поскольку оба вируса используют клетку для производства большего количества вирусных частиц, внутри неё плавает множество частей еще не собранных вирусов, включая вновь созданные геномы.
В этих условиях рекомбинация может происходить двумя различными способами. Во-первых, сходные участки вирусных геномов могут соединяться и обмениваться фрагментами, физически разрушая и повторно соединяя ДНК или РНК. Во-вторых, вирусы с разными сегментами (вроде крошечных хромосом) могут обмениваться некоторыми из этих сегментов, процесс, называемый реассортиментом [2,3].
Рекомбинация у вирусов гриппа
Вирусы гриппа являются мастерами реассортимента. Вирусы гриппа имеют восемь сегментов РНК, каждый из которых несет один или несколько генов [4].
Когда два вируса гриппа инфицируют одну и ту же клетку одновременно, некоторые из новых вирусов, продуцируемых внутри клетки, могут содержать комбинацию сегментов (например, сегменты 1-4 от штамма A и сегменты 5-8 от штамма B).
Клетки свиньи могут быть распознаны и, таким образом, инфицированы, как вирусами человеческого, так и птичьего гриппа (а также вирусами свиней) [6]. Если клетка свиньи заражена двумя типами вирусов одновременно, она может выделять новые вирусы, которые содержат смесь генетического материала вирусов человека и птицы.
Мутации у вирусов
Мы видели, как рекомбинация может влиять на эволюцию вируса, но как быть с мутациями? Мутации – это постоянные изменения генетического материала (ДНК или РНК) вируса. Мутация может произойти в результате ошибок при копировании ДНК или РНК вируса.
Некоторые вирусы имеют очень высокую частоту мутаций, но это не всегда так. В целом, РНК-вирусы, как правило, имеют более высокую частоту мутаций, в то время как ДНК-вирусы, как правило, имеют более низкую частоту мутаций [8].
Исследование случаев лекарственной устойчивости ВИЧ
Вирус иммунодефицита человека (ВИЧ) – это вирус, вызывающий синдром приобретенного иммунодефицита (СПИД). ВИЧ является быстро эволюционирующим РНК-вирусом с высокой частотой мутаций, что способствует появлению устойчивых к лекарствам штаммов.
Чтобы понять, как это происходит, давайте рассмотрим пример конкретного противовирусного препарата – ингибитора обратной транскриптазы. Ингибиторы обратной транскриптазы, такие как молекула невирапина, показанная на диаграмме ниже, связываются с вирусным ферментом, называемым обратной транскриптазой (красно-коричневая структура). Препарат не позволяет ферменту создавать из РНК-генома ВИЧ последовательность ДНК. Если этот фермент неактивен, то вирус ВИЧ теряет способность инфицировать клетку [11].
Невирапин останавливает большинство вирусов ВИЧ. Однако очень малая доля вирусов в популяции ВИЧ (по случайности) может иметь мутацию в гене обратной транскриптазы, что делает их устойчивыми к лекарству. Например, у них может быть генетическое изменение, которое изменяет сайт связывания лекарственного средства с ферментом, так что лекарственное средство больше не может фиксироваться и ингибировать активность фермента.
Вирусы с этой резистентной мутацией будут размножаться, несмотря на присутствие препарата, и через несколько поколений уровень вирусной нагрузки, присутствующий до введения препарата, может восстановиться. И не только, теперь вся популяция вирусов будет устойчива к лекарству!
Подход ВААРТ работает, потому намного меньше вероятности, что какой-либо вирус ВИЧ в популяции будет иметь сразу три мутации, которые обеспечивают устойчивость ко всем трем препаратам одновременно. Хотя формы вируса с множественной лекарственной устойчивостью в конечном итоге могут развиться, комбинации с несколькими лекарственными средствами значительно замедляют развитие резистентности.
Подбробнее о ВИЧ, в нашем видео:
Почему вирусы эволюционируют так быстро?
Как правило вирусы эволюционируют быстрее, чем люди, в чем причина этого?
Как мы видели в случае ВИЧ, некоторые вирусы имеют высокую частоту мутаций, которые являются источником различных вариаций в качестве исходного материала, что помогает вирусам быстро эволюционировать. Двумя другими факторами, способствующими быстрой эволюции вирусов, являются большой размер популяции и быстрый жизненный цикл [14].
Чем больше размер популяции, тем выше вероятность того, что у в ней будет вирус с определенной случайной мутацией (например, обеспечивающей лекарственную устойчивость или высокую инфекционность), на которую может действовать естественный отбор. Кроме того, вирусы очень быстро размножаются, поэтому их популяции развиваются в более короткие сроки, чем их хозяева. Например, вирус ВИЧ проходит свой жизненный цикл всего за 52 часа, по сравнению с примерно 20 годами для жизненного цикла человека [15]!
Какие инструменты существуют для борьбы с быстро эволюционирующими вирусами? Принятие мер по предотвращению передачи, поиск новых лекарств для лечения, разработка и использование вакцин — все это важные стратегии.
Друзья, если вам понравился этот курс, и вы хотели бы видеть еще больше качественных, образовательных материалов, то пожалуйста 🙏, поддержите наш проект, поделившись 📢 этой статьей с друзьями и подписавшись на нас:
Эта статья распространяется по лицензии CC BY-NC-SA 4.0.
Цитируемые работы:
7. Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., and Jackson, R. B. (2011). Emerging viruses. In Campbell biology (10th ed., p. 403). San Francisco, CA: Pearson.
Как эволюционируют вирусы и каким станет SARS-CoV-2
Весной 1997 года у трехлетнего мальчика в Гонконге началась болезнь, по всем симптомам напоминавшая обычную простуду. Кашель и высокая температура не проходили шесть дней, из-за чего маленького пациента доставили в Больницу королевы Елизаветы.
Несмотря на интенсивную терапию, состояние мальчика только ухудшалось, и спасти его так и не удалось. Около месяца вирусологи анализировали образцы мокроты мальчика, пытаясь выяснить, что же послужило причиной скоропостижной смерти, но все тщетно. В итоге, китайские специалисты решили отправить биологический материал своим американским коллегам, которые сумели определить, что виновник — вирус гриппа H5N1, или птичьего гриппа.
В тот раз человечеству крупно повезло, поскольку вирус птичьего гриппа тогда не приобрел способности передаваться от человека к человеку. Но все могло быть иначе, если бы вирус H5N1 встретился с вирусом сезонного гриппа, например, в организме свиньи. В таких случаях, когда сразу несколько вирусов проникают в клетку, происходит их реассортация — обмен генетическим материалом, в результате чего возникают новые варианты вирусов.
Схема процесса реассортации вирусов
The New England Journal of Medicine
Геном вирусов гриппа состоит из 8 отдельных сегментов РНК, которые собираются в вирионы в клетке-хозяине. Если клетка одновременно инфицируется двумя вирусами гриппа, то это уже 16 сегментов, которые могут собираться в разных комбинациях. Теоретически 2 вируса гриппа могут давать 256 различных комбинаций.
Реассортация — один из основных механизмов появления пандемических вирусов. Яркий пример — вирус А(H1N1)pdm09, вызвавший пандемию в 2009 году. А(H1N1)pdm09 — продукт реассортации вирусов человека, свиньи и птиц в организме свиньи.
Это не первый коронавирус, с которым столкнулось человечество. О коронавирусах стало известно еще в середине 1960-х годов. В 2002 году коронавирус SARS-CoV стал причиной эпидемии тяжелого острого респираторного синдрома (ТОРС). Всего было зафиксировано 8437 случаев заболевания, из которых 813 закончились смертью заболевших. Спустя 10 лет стал бушевать другой коронавирус — MERS-CoV, вызвавший ближневосточный респираторный синдром (БВРС), смертность которого составляет 35 процентов.
Оба этих вируса, а также новый коронавирус SARS-CoV-2 попали к человеку от летучих мышей. Но, в отличие от вируса птичьего гриппа, коронавирусы SARS-CoV и SARS-CoV-2 легко передаются от человека к человеку.
The New England Journal of Medicine
Вирус MERS-CoV в основном передается от животного к человеку, а передача от человека к человеку возможна лишь при очень тесном контакте, например в семье или между инфицированным пациентом и врачом.
Вирусы SARS-CoV и SARS-CoV-2 сумели распространиться на людей благодаря тому, что S-белок короны вирусов по своей структуре имитирует ангиотензинпревращающий фермент 2. Благодаря этому они успешно связываются с рецепторами ангиотензинпревращающего фермента 2 АСЕ2 (их много на поверхности клеток легких — альвеолоцитов), после чего впрыскивают свою РНК внутрь клетки.
Сравнение вирусов SARS-CoV и SARS-CoV-2 показывает, что у последнего сила связывания (аффинность) с рецептором АСЕ2 выше. В исследовании китайских ученых показано, что основные отличия между вирусами SARS-CoV и SARS-CoV-2 сосредоточены между 435 и 510 аминокислотными остатками рецептор-связывающего домена (RBD). Это регион рецептор-связывающего мотива (RBM) RBD, определяющего специфичность к клеткам-хозяина.
Анализ аминокислотных последовательностей RBM двух типов коронавирусов летучих мышей (RaTG13-CoV, Bat-CoV), коронавируса панголинов (GD Pangolin-CoV) и SARS-CoV-2 показал пять ключевых отличий в аминокислотной последовательности, которые являются общими только для GD Pangolin-CoV и SARS-CoV-2.
Аминокислотная последовательность рецептор-связывающего мотива вирусов nCoV-2019 (SARS-CoV-2), Pangolin-CoV, RaTG13-CoV и Bat-CoV. Вертикальными рамочками выделены ключевые аминокислоты, принимающие участие в связывании с рецептором ACE2. Все пять аминокислот nCoV-2019 совпадают с таковыми у Pangolin-CoV. У nCoV-2019 и RaTG13-CoV всего одна общая аминокислота.
Matthew C. Wong et al. / bioRxiv, 2020
Это позволяет исследователям предположить, что панголины могут рассматриваться в качестве потенциального промежуточного хозяина, в организме которых могла произойти рекомбинация.
По мнению китайских исследователей, GD Pangolin-CoV передал вирусу RaTG13 гены, ответственные за синтез RBD, благодаря чему новый вирус приобрел возможность преодолевать межвидовой барьер. Но это пока гипотеза, поскольку сходство между двумя вирусами может быть и итогом конвергентной эволюции, когда два вида независимо друг от друга приобретают одинаковый набор признаков из-за сходства условий обитания.
И SARS-CoV, и MERS-CoV удалось сравнительно быстро обуздать из-за высокой смертности и относительно быстрого развития симптомов. Как ни странно, но чем более смертоносен вирус, тем легче его локализовать. Другая история с SARS-CoV-2. В большинстве случаев инфекция проходит в легкой форме, что позволяет вирусу выигрывать время и распространяться дальше.
Существует несколько способов, с помощью которых вирус способен преодолеть межвидовой барьер. Это мутации и рекомбинации.
Упомянутая выше реассортация генов является одним из видов рекомбинации и характерна для сегментированных вирусов (в частности, вирусов гриппа). Коронавирусы обладают несегментированной РНК, поэтому для них возможны другие варианты рекомбинации, когда один из вирусов привносит в другой вирус какой-то фрагмент генома.
Второй механизм изменчивости вирусов — это мутации. Поскольку репликация РНК, в отличие от ДНК, происходит без возможности репарации (исправления ошибок), то при синтезе РНК вероятность появления ошибок в 10 тысяч раз выше, чем при репликации ДНК.
При каждом репликационном цикле около 10 процентов РНК-вирусов имеют мутации. Это может быть выпадение или вставка одного или нескольких нуклеотидов. Мутации в РНК являются одним из основных источников антигенного дрейфа — изменения антигенных характеристик.
В отношении нового коронавируса SARS-CoV-2 промежуточного хозяина пока не установили. Анализ рецептор-связывающего домена S-протеина указывает на то, что это могут быть панголины. Но есть и другое исследование по филогенетическому анализу, в котором ученые предполагают, что промежуточного хозяина нет, а вирус перекочевал к людям непосредственно от рукокрылых.
Во всей этой истории с перемещениями важным является тот факт, что на всем протяжении своего пути вирусы постоянно мутируют. К этому их вынуждают внешние обстоятельства.
При вирусной инфекции организм хозяина запускает различные механизмы защиты. Помимо выработки антител, это запуск программы апоптоза клеток, продукция интерферона, который активирует синтез протеинкиназы, нарушающей синтез белков, в том числе и вирусных. Также при вирусной инфекции увеличивается синтез олигоаденилатсинтазы, выступающей в роли РНКазы, которая фрагментирует РНК, в том числе и вирусные.
Большинство респираторных вирусов, передаваясь от человека к человеку, теряли свои позиции под прессом иммунной системы. Такой феномен известен как аттенуация (ослабление). Ближайший родственник нового коронавируса — SARS-CoV — ослабел уже на средних стадиях эпидемии.
Дальнейшие исследования на клеточных культурах показали, что делеция в 29 нуклеотидов у вируса SARS-CoV в ORF8 привела к уменьшению его репликативной активности. Концентрация вирусных частиц с делетированным участком в инфицированных клетках была ниже в 23 раза.
За эволюцией SARS-CoV-2 пристально следит не один десяток научно-исследовательских учреждений. Международная группа ученых в режиме реального времени делится информацией о новых мутациях вируса SARS-CoV-2 на ресурсе nextstrain.org.
Полученные сведения позволили руководителю объединения вычислительному биологу Тревору Бэдфорду предположить, что переход вируса SARS-CoV-2 от летучей мыши к промежуточному хозяину состоялся 20-70 лет назад. Газете Financial Times Тревор Бэдфорд рассказал, что все изменения, происходящие с вирусом, укладываются в логику естественной эволюции, обычной для вирусов. Тем самым ученый опроверг теории о генно-инженерном создании вируса.
В начале марта вышла статья китайских ученых об идентификации двух форм вируса SARS-CoV-2 — L и S. Две формы отличаются между собой лишь двумя однонуклеотидными полиморфизмами. При этом более ранняя S-форма вируса является менее агрессивной, чем L-форма.
Более 96 процентов заболевших в Ухане заразились L-формой, в то время как в других странах на долю SARS-CoV-2 L-типа приходится чуть больше 60 процентов случаев. Группа ученых из Центра по изучению вирусов Университета Глазго считает такие выводы некорректными.
Во-первых, по мнению исследователей, двух однонуклеотидных полиморфизмов недостаточно для разделения вируса на два типа. К моменту выпуска статьи было идентифицировано 111 мутаций, не оказывающих существенного влияния на функциональный контекст.
Во-вторых, шотландские эксперты акцентируют внимание на том, что превалирование L-типа вируса не обязательно указывает, что он легче передается. Чтобы утверждать подобное, необходимо проведение исследования с проверкой нулевой гипотезы, предполагающей равные скорости передачи инфекции, чего не было сделано исследователями из Китая.
Первые обнадеживающие изменения в вирусе SARS-CoV-2 были замечены 11 марта в Сингапуре. Это делеция огромного куска все в той же OFR8 (как и у SARS-CoV и MERS-CoV) размером целых 382 нуклеотида.
Пока ученые не берутся делать однозначные выводы относительно репликативных свойств измененного вируса. Учитывая тот факт, что делеции в ORF8 вирусов SARS-CoV приводили к изменению в работе N-белка вируса, отвечающего за репликацию, исследователи предполагают, что и в данном случае речь идет об аттенуации вируса.
Возникает закономерный вопрос — это первая и последняя встреча с SARS-CoV-2 или нам придется схлестнуться с ним еще раз после окончания пандемии? Напомним, что пандемия испанки затихла в июле-августе 1918 года, а осенью пришла вторая, более смертоносная волна.
На вопрос о возможной повторной встрече с вирусом SARS-CoV-2 сейчас ответить сложно. Если все пойдет по пути значительного ослабления вируса, то в конечном итоге он превратится в один из неопасных циркулирующих вирусов, вызывающих простуды.
Если присмотреться к вирусу SARS-CoV (вызывающего ТОРС), то повторных вспышек заражения этим вирусом не было. Эпидемия началась в ноябре 2002 года, а закончилась в июне 2003-го.
В 2004 году была вспышка атипичной пневмонии в Китае, однако это произошло из-за контакта сотрудника одной из китайских лабораторий с образцом вируса SARS-CoV. Передачи от человека к человеку или от животного к человеку начиная с июня 2003 года зафиксировано не было. При этом вирус по-прежнему живет в летучих мышах и циветах, и никто не знает, будет ли повторное заражение человека.
Что касается коронавируса MERS-CoV, то он все еще дает о себе знать. После 2013 года вспышка MERS была зафиксирована в Южной Корее. Диагноз подтвердился у 182 пациентов, 33 из которых умерли от атипичной пневмонии. В 2019 году зафиксировано 212 случаев заражения и 57 случаев смерти в Саудовской Аравии и Омане. Согласно данным ВОЗ, 9 и 13 января 2020 года были лабораторно подтверждены два случая заражения вирусом MERS-CoV в Объединенных Арабских Эмиратах.
В борьбе с новым коронавирусом большие надежды возлагают на вакцины, ее разработкой занимаются множество лабораторий. Однако быстро меняющийся геном вируса SARS-CoV-2 пока не позволяет ученым гарантировать полный успех. На сегодня текущие мутации никак не усложнили поиск вакцины, но что будет через месяц-два, спрогнозировать сложно.
Помогают ученым и уже имеющиеся наработки по вакцинам против вируса SARS-CoV. Около 23 процентов Т-клеточных и 16 процентов В-клеточных эпитопов являются консервативными для обоих вирусов. Это дает основание полагать, что дальнейшие мутации, скорее всего, не будут затрагивать эти эпитопы.
Наиболее простой способ — создать вакцину на основе аттенуированного или убитого вируса, но такие вакцины обладают большим числом побочных эффектов, а кроме того, они более чувствительны к условиям хранения. Вторая разновидность — рекомбинантные вакцины, представляющие собой субъединицу S-белка вируса SARS-CoV-2, синтезированную дрожжами или бактериями. Данная вакцина не содержит вирусного материала, поэтому спектр ее побочных действий крайне низок.
И третья разновидность — РНК- или ДНК-вакцины, представляющие собой генно-инженерную конструкцию, которая при попадании в организм начинает синтезировать белки вируса SARS-CoV-2. Преимущества РНК- и ДНК-вакцин в том, что они обеспечивают не только гуморальный иммунитет (выработку антител), но и специфический клеточный иммунитет — активацию макрофагов, натуральных киллеров и цитотоксических Т-лимфоцитов. В США уже начались испытания новой вакцины на добровольцах.
Защита, точнее, вакцины от вирусов появились еще до того, как люди поняли, что такое вирус. Они понимали, что существуют инфекционные заболевания, но не видели никакой разницы между бактериями, вирусами и даже какими-нибудь амебами. По-видимому, первой появилась вакцина против натуральной оспы, которую английский врач Эдвард Дженнер создал в конце XVIII века. Во всяком случае, это первый документированный случай исследования и использования вакцины. Потом, уже в 1870-е годы, случилось другое знаменитое событие — создание Луи Пастером вакцины против бешенства. Это прекрасно работало и выглядело как настоящее чудо: совершенно неизлечимая болезнь, которую можно предотвратить и даже вылечить, если вовремя начать лечение при помощи этих вакцин.
Но при этом вакцины создавались вслепую. Никаких идей о том, что есть некий особый тип агента, который вызывает эти болезни, не было. Такие идеи стали появляться в самом конце XIX века. В 1890-е годы был такой русский ученый, Дмитрий Иосифович Ивановский, молодой тогда еще человек, который готовился защищать диссертацию, ничем особенно не примечательный. Он исследовал болезни табака и был первым, кто уделил внимание тому обстоятельству, что эта болезнь передавалась с соком больных растений. То есть возбудитель этой болезни как-то проходил через фильтры, которые не пропускают бактерии. Ивановский на самом деле не понимал, живой это организм или нет, он скорее думал, что это токсин, хотя и подозревал, что это начало каким-то образом репродуцирует себя. Но, как бы то ни было, первым описал такой объект, привлек внимание научного сообщества и стал, по сути, основателем вирусологии. А дальше довольно за короткое время был сделан еще ряд важных открытий: было показано, что многие болезни вызываются вирусами — ящур, желтая лихорадка, полиомиелит, саркома птиц.
Английский бактериолог Фредерик Туэрт в 1915 году описал в своей статье группу вирусов, инфицирующих бактерии, а французско-канадский микробиолог Феликс Д’Эрелль в 1917 году описал эти вирусы подробно и дал им название бактериофаги, то есть ‘пожиратели бактерий’, поскольку при добавлении к бактериям в питательной среде эти вирусы создают зону с мертвыми бактериями. Таким образом, к концу Первой мировой войны стало понятно, что существуют некие мельчайшие агенты, которые составляют совершенно особый класс паразитов.
Такой иммунитет исключительно эффективен. Однако включается пресловутая гонка: как только вирус меняется в соответствующей части генома, он становится устойчивым против вакцины. И чтобы восстановить иммунитет, хозяин должен заимствовать новые фрагменты измененного вирусного генома. Так что это такая фундаментальная (поскольку основана на центральном принципе в биологии — комплементарности нуклеиновых кислот) форма этой гонки вооружений.
Есть и другие способы борьбы. Многие вирусы разрабатывают специальные, так сказать, противозащитные средства. В частности, у вирусов очень часто есть некие белки, которые адаптируются к системе иммунитета и мешают ей. Очень часто происходит так, что вирус захватывает компонент хозяйской защитной системы и его же использует против нее. Этот компонент меняется и перестает работать, но воспринимается как работающий. И таким образом вирус как бы ставит хозяину палки в колеса. Это очень распространенное явление. Такая гонка вооружений ведет к разнообразию как вирусов, так и хозяйской системы защиты. Это важнейший фактор генерации разнообразия в процессе эволюции.
Очевидно, что какие-то вирусы подстраиваются под иммунную систему и продолжают борьбу, а какие-то оказываются побежденными. Но мы ничего не знаем об этих видах, которые существовали миллионы лет назад, но так и не прошли по пути эволюции. Правда, мы можем реконструировать какие-то предковые формы, которые оставили потомство, дошедшее до наших дней.
В ходе эволюции у вирусов появились и другие способы выживания. Они могут встроить свой геном в клетку хозяина и таким образом жить. Однако когда что-то плохое угрожает его существованию, вирус активируется, выходит из своего полусонного состояния, убивает хозяина и переходит к другому. Вообще говоря, в ходе эволюции победили именно те паразиты, которые умеют сочетать названные две стратегии. Это как умение правильно распределять свои ставки в казино. И очень важно понимать, что гибель хозяина или его тяжелое состояние ни в коем случае не является чем-то выгодным для паразита. Это побочный эффект его деятельности.
Размножение вирусов, как правило, не сулит ничего хорошего индивидуальным организмам. Хотя, с другой стороны, вирусы могут стимулировать иммунитет. Были даже попытки вылечить рак при помощи заражения вирусами. Но в целом в ходе эволюции паразиты и вирусы играют огромную роль, без них не было, нет и не будет никакой жизни. И вся история жизни — это история совместной эволюции взаимодействия паразитов с хозяином. И увеличение сложности защиты хозяев, совершенствование иммунной системы было бы невозможно без постоянного взаимодействия с паразитами. В частности, можно математически показать, что возникновение многоклеточных организмов стимулируется во многом именно защитой от вирусов. Многоклеточность становится выгодной тогда, когда клетки атакуются вирусом: выгодно, когда одна клетка принимает на себя удар и при помощи механизмов программируемой клеточной смерти может себя убить и избавить других от вируса. И многие другие приспособления, которые существуют у клеточных организмов, связаны либо с защитой от вирусов, либо с генетическим материалом, который хозяин получает от вируса.
Можно привести следующий пример. Есть довольно знаменитый фермент под названием теломераза — это тот фермент, который обеспечивает стабилизацию наших хромосом, как бы следит за тем, чтобы они не становились короче. Это совершенно необходимо для выживания организма, и активность этого фермента связана как со старением, так и с раком. И изначально, на заре становления эукариот, эта самая теломераза была не чем иным, как обратной транскриптазой, которая у ранних эукариот входила в состав одного из мобильных генетических элементов. И нужно всегда помнить, что наш собственный геном где-то на две трети или чуть меньше состоит из остатков мобильных генетических элементов. Большинство людей полагают, что это бесполезный мусор, но их так много, что многие из них используются для всяких нужд. Таким образом, эволюция хозяев никогда не свободна от паразитов и очень многое от них берет.
В 1971 году великий американский ученый Дэвид Балтимор предложил классифицировать вирусы в зависимости от типа геномной нуклеиновой кислоты — ДНК или РНК. Тип вируса, согласно этой классификации, определяет цикл его размножения. Но в природе эти классы распределены очень неравномерно. Если мы посмотрим, какие виды вирусов заражают разные организмы, получится интересная картина. У бактерий и архей подавляющее большинство — это вирусы, содержащие двуцепочечную ДНК. А у эукариот существенно преобладают РНК-вирусы, которых существует просто фантастическое разнообразие. Причины этих различий очень интересны, но хорошо понятны только в немногих случаях. Например, большие ДНК-содержащие вирусы не могут распространяться в растениях, они там не выживают и присутствуют только в водорослях. У высших растений их место занимают РНК-содержащие вирусы. Вот это понятие ниши как раз и определяет, по-видимому, различия в распространении вирусов. Но это не всегда можно точно понять.
Научное открытие, состоящее в том, что вирусы часто и неожиданно перемещаются от вида к виду, меняет наши представления об истории их эволюции и может иметь тревожные последствия в виде новых болезней.
Когда формируются новые виды, откуда берутся их вирусы? Вирусы, являющиеся не более чем стадом свободно пасущегося генетического материала, отчаянно нуждаются в клеточных структурах своих хозяев и в ресурсах, чтобы снова и снова воспроизводиться. Вирус без хозяина — это ничто.
В силу такой зависимости некоторые вирусы сохраняют верность своим хозяевам на всем протяжении эволюции, мутируя и немного изменяясь всякий раз, когда хозяин превращается в новый вид. Этот процесс называется содивергенция. Люди и шимпанзе, например, имеют немного отличающиеся друг от друга вирусы гепатита В, причем оба они, скорее всего, мутировали из той версии, которая более четырех миллионов лет назад заразила общего предка человека и обезьяны.
Другой вариант, носящий название межвидовой переход, случается тогда, когда вирус переселяется на хозяина совершенно нового типа, который никак не связан с предыдущим. Такой вид вирусной эволюции связан с новыми тяжелыми болезнями, как то птичий грипп, ВИЧ, лихорадка Эбола и атипичная пневмония. А поскольку такие болезни исключительно опасны, нам повезло, что межвидовой переход это довольно редкое явление.
Однако недавно, когда ученые из Австралии провели первое исследование долговременной эволюции тысяч различных вирусов, они пришли к поразительному заключению: межвидовой переход намного важнее и происходит намного чаще, чем мы себе представляли. Смена видов является движущей силой большинства крупных эволюционных новообразований в вирусах. Между тем, содивергенция распространена меньше, чем мы предполагали, и вызывает она главным образом постепенные изменения.
Эти выводы отнюдь не означают, что новые болезни, возникающие от межвидового перехода, являются более серьезной и неминуемой угрозой, чем предполагала медицина. Однако они показывают, что динамика эволюции вирусов может быть неожиданно сложной. Если ученые недооценивали частоту перехода вирусов к новым хозяевам, то в таком случае очень важным приоритетом становится изучение того, какие вирусы больше всего к этому предрасположены.
Есть множество причин, по которым межвидовые скачки вряд ли могут оказывать существенное влияние на эволюцию вирусов. Препятствия, мешающие вирусу успешно перейти к хозяину из другого вида, весьма серьезные и труднопреодолимые. Если вирус не в состоянии манипулировать генетическим материалом хозяина и воспроизводиться, то это тупик, конец ветви. Вирусу может понадобиться множество попыток инфицировать нового хозяина, которые он предпринимает на протяжении десятилетий или даже больше, аккумулируя в это время соответствующие мутации. Делает он это до тех пор, пока не самоутвердится и не начнет размножаться и распространяться.
Более того, когда вирусы успешно перескакивают с одного вида на другой, они могут стать жертвой собственного успеха. Это прежде всего относится к небольшим изолированным популяциям (именно так зарождались многие новые виды). Опасные вирусы могут очень быстро уничтожить доступных хозяев, после чего исчезнут сами.
Профессор биологии Сиднейского университета Эдвард Холмс (Edward Holmes) и его австралийские коллеги решили разгадать эту загадку. С помощью данных о вирусном геноме они реконструировали историю эволюции 19 основных вирусных семейств, каждое из которых содержит от 23 до 142 вирусов, обитающих в разных хозяевах, начиная с млекопитающих и заканчивая рыбами и растениями. Они создали филогенетические (эволюционные) схемы для семейств вирусов и для видов их хозяев, после чего сравнили их. Ученые рассуждали следующим образом: если вирус в основном содивергирует со своим хозяином, эволюционируя вместе с ним, то в этом случае филогенетическая схема вируса должна быть схожа со схемой его хозяина, поскольку предки вируса должны были инфицировать предков хозяина. Но если вирус скачет от хозяина к хозяину, эволюционные схемы хозяев и вирусов будут выглядеть по-разному. Насколько по-разному? Это зависит от количества межвидовых переходов.
А вот инфекции с участием вируса ДНК часто бывают хроническими. Когда часть популяции хозяина отклоняется от типичной формы, чтобы создать новый вид, у нее больше шансов забрать с собой вирус, так как инфицировано гораздо больше хозяев. Таким образом, вероятность содивергенции вируса и его нового хозяина повышается.
В 1975 году Фрэнсис Блэк (Francis L. Black) из Йельского университета написал научную работу, давшую углубленное представление о том, как динамика популяции хозяев влияет на человеческие болезни. Изучив довольно изолированные и маленькие общины аборигенов Амазонки, ученые обнаружили, что хронические вирусные инфекции у этих людей случаются довольно часто, а вот острые инфекции в основном отсутствуют. Изоляция защищает эти племена от новых вирусов. Те немногочисленные опасные вирусы, которые все же попадали в туземные общины, в скором времени вымирали. Хозяев для выживания у них было немного, и поэтому вирусы исчезали довольно быстро.
Открытие, свидетельствующее о том, что межвидовые переходы происходят часто, может вызвать немалую тревогу, поскольку они связаны с новыми опасными болезнями. В прошлом скачков было много, и происходили они часто. Так что приготовило нам будущее — то же самое, но в больших количествах?
Однако дальнейшие исследования в области истории эволюции вирусов помогут ученым понять, есть ли такие виды, которым мы должны уделять больше внимания как источникам новых инфекций. (Эпидемиологи уже тщательно следят за вирусами, передающимися от домашней птицы человеку, поскольку опасаются птичьего гриппа.) Возможно, вирусы с растений, рыбы и млекопитающих не менее опасны для человека. В равной степени возможно, что в ходе исследований с целью прогнозирования следующей эпидемии ученые сузят сферу своего внимания, ограничив ее несколькими группами повышенного риска.
Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.
Читайте также: