Из чего состоит суперкапсид вируса
Вирусы по праву можно назвать настоящими хозяевами нашей планеты. Где бы ученые не производили исследования, они натыкаются на уже известные вирусы или открывают новые, которые способны выживать при экстремально низких и высоких температурах, в кислотных или щелочных средах. Вирусы обладают уникальной способностью, не свойственной никаким другим живым организмам – хранить генетическую информацию на РНК. Из чего состоят вирусы? Как они внедряются в живую клетку? Как реплицируют свой генетический материал?
Общие сведения о вирусах
Вирус, находящийся вне живой клетки, не проявляет никаких признаков жизни. Такая частица называется вирионом. Вирионы бывают простыми и сложными. Простой состоит из внешней оболочки (капсида) и генетического материала вируса (ДНК или РНК). У сложных вирусов для защиты генома от неблагоприятных факторов есть еще одна оболочка – суперкапсид. В состав капсида входят в основном белки и небольшое количество липидов – холестерина и фосфолипидов. В составе суперкапсида присутствуют также гликопротеины, которые принимают непосредственное участие в проникновении вируса в клетку. Размножаются вирусы путем экспрессии своего генома в зараженной клетке.
Изучим особенности структуры вирусов более подробно.
Строение капсида
Вирионная частица защищена от внешних воздействий плотной оболочкой – капсидом. Это структура, благодаря которой геном вируса защищен от многих повреждений до проникновения в клетку. Помимо белков и липидов, в облочке присутствуют ферменты. Капсид состоит из капсомеров – белковых молекул, которые можно различить в микроскоп.
Геном и белковая оболочка, защищающая его, вместе называются нуклеокапсидом.
Суперкапсид
Простые вирусы защищены от внешних факторов только капсидом, в то время как у сложных вирусов есть дополнительная липопротеиновая оболочка – суперкапсид. Как и капсид, он состоит в основном из белков и липидов.
На поверхности суперкапсидов многих вирусов есть гликопротеидные наросты (пепломеры). Гликопротеины принимают участие в идентификации клеток и связывании вируса с клеткой-мишенью. Затем вирусная оболочка сливается с мембраной хозяина, а тем временем капсид и вирусный геном проникают в клетку и встраиваются в нее. Суперкапсид формируется на этапе сборки вирусных частиц и выхода вируса из клетки.
Функции капсида
Основная функция суперкапсида и капсида – защита генетического материала вируса. А также доставка генома вируса в клетку и взаимодействие с иммунной системой хозяина.
Внешняя оболочка вируса призвана уберечь генетический материал от летальных химических и физических факторов. К ним относятся радиационное излучение, резкие изменения рН или температуры, действие протеолитических и нуклеолитических ферментов.
При поставке генома вируса в клетку капсид (или суперкапсид) связывается с внешними рецепторами клетки-хозяина. На поверхности вирусов, имеющих суперкапсид, за адсорбцию вируса на поверхности клетки хозяина отвечают пепломеры. На поверхности пепломеров некоторых вирусов, например, миксовирусов или вируса гриппа, присутствует белок гемагглютинин, вызывающий агглютинацию эритроцитов. На поверхности суперкапсидных отростков также присутствует нейраминидаза, разрушающая мембрану клетки.
Вирусы без суперкапсидной оболочки как правило проникают через мембрану клетки-хозяина полностью. Остальные вирусы проникают в клетку после слияния внешней оболочки с плазматической мембраной. При этом в цитоплазму клетки попадает только вирусный геном.
Типы симметрии капсида
Поскольку капсид – это сложная структура, состоящая из мелких субъединиц, очевидно, что эти структурные компоненты могут быть организованы по-разному. Именно поэтому существую различные типы симметрии капсидов.
Один из самых распространенных в природе типов капсида – это икосаэдрический. Он характерен для аденовирусов и многих бактериофагов. Капсомеры расположены так, что формируют невыпуклый многогранник с 12 вершинами.
Другой тип капсида – это спиральный. При таком типе симметрии белковые субъединицы уложены как бы по спирали вокруг оси симметрии. Спиральный капсид характерен для вирусов желтухи и табачной мозаики. Такая организация делает вирус палочкообразным.
Смешанный тип симметрии, при котором часть капсида имеет икосаэдрическую форму, а часть спиральную, встречается у бактериофагов.
Геном вируса
В отличие от большинства клеток, имеющих в своем составе и ДНК, и РНК, вирионы содержат только одну нуклеиновую кислоту, которая и образует их геном. Большая часть вирусов человека являются РНК-содержащими. Свойство хранить генетический материал на РНК – уникальная особенность вирусов.
Вирус может содержать одноцепочечную или двуцепочечную нуклеиновую кислоту. Двуцепочечную ДНК в составе генома имеют герпесвирусы и аденовирусы, одноцепочечную парвовирусы, двуцепочечную РНК ротавирусы, одноцепочечную РНК астровирусы.
Некоторые вирусы, например, ВИЧ, имеют в составе фермент, который позволяет строить ДНК на матрице РНК – обратную транскриптазу.
Формы вирусов
Вирусы очень разнообразны, как по своему химическому составу, так и по форме. Большинство вирусов (герпес, оспа), имеют сферическую форму. Капсид вируса в этом случае имеет икосаэдрическую симметрию. Распространены также палочковидные вирусы (желтуха, табачная мозаика). Встречаются пулевидные вирусы (вирус бешенства). Необычными являются астровирусы, имеющие звездчатую форму.
Генетический материал вирусов упакован в специальный симметричный футляр -- капсид [от лат. capsa, футляр]. Капсид представлен белковой оболочкой, состоящей из повторяющихся субъединиц. Основные функции капсида -- зашита вирусного генома от внешних воздействий, обеспечение адсорбции вириона к клетке, проникновение его в клетку путём взаимодействия с клеточными рецепторами.
капсид.doc
Капсид вируса. Функции капсида вирусов. Капсомеры. Нуклеокапсид вирусов. Спиральная симметрия нуклеокапсида. Кубическая симметрия капсида
Генетический материал вирусов упакован в специальный симметричный футляр -- капсид [от лат. capsa, футляр]. Капсид представлен белковой оболочкой, состоящей из повторяющихся субъединиц. Основные функции капсида -- зашита вирусного генома от внешних воздействий, обеспечение адсорбции вириона к клетке, проникновение его в клетку путём взаимодействия с клеточными рецепторами.
Капсид образуют одинаковые по строению субъединицы -- капсомеры, организованные в один или два слоя по двум типам симметрии -- кубическому или спиральному. Симметричность капсида связана с тем, что для упаковки генома требуется большое количество капсомеров, а компактное их соединение возможно лишь при условии симметричного расположения субъединиц. Формирование капсида напоминает процесс кристаллизации и протекает по принципу самосборки. Число капсомеров строго специфично для каждого вида и зависит от размеров и морфологии вирионов. Капсомеры (морфологические единицы вирусов) образуют молекулы белка-- протомеры (структурные единицы). Протомеры могут быть мономерными (содержать один полипептид) либо полимерными (включать несколько полипептидов).
Комплекс капсида и вирусного генома называют нуклеокапсидом. Он повторяет симметрию капсида, то есть обладает спиральной либо кубической симметрией соответственно .
В нуклеокапсиде взаимодействие нуклеиновой кислоты и белка осуществляется по одной оси вращения. Каждый вирус со спиральной симметрией обладает характерной длиной, шириной и периодичностью нуклеокапсида. Нуклеокапсиды большинства патогенных для человека вирусов имеют спиральную симметрию (например, коронавирусы, рабдовирусы, пара- и ортомиксовирусы, буньявирусы и ареновирусы). К этой группе относят и вирус табачной мозаики. Организация по принципу спиральной симметрии придаёт вирусам палочковидную форму. При спиральной симметрии белковый чехол лучше защищает наследственную информацию, но требует большого количества белка, так как покрытие состоит из сравнительно крупных блоков.
Кубическая симметрия. У подобных вирусов нуклеиновая кислота окружена капсомерами, образующими фигуру икосаэдра-- многогранника с 12 вершинами, 20 треугольными гранями и 30 углами. К вирусам с подобной структурой относят аденовирусы, реовирусы, иридови-русы, герпесвирусы и пикорнавирусы. Организация по принципу кубической симметрии придаёт вирусам сферическую форму. Принцип кубической симметрии -- самый экономичный для формирования замкнутого капсида, так как для его организации используются сравнительно небольшие белковые блоки, образующие большое внутреннее пространство, в которое свободно укладывается нуклеиновая кислота.
Некоторые бактериофаги (вирусы бактерий) имеют двойную симметрию: головка организована по принципу кубической симметрии, отросток -- по принципу спиральной симметрии. Отсутствие постоянной симметрии. Для вирусов больших размеров (например, для поксвирусов) характерно отсутствие постоянной симметрии.
В состав нуклеокапсидов также входят внутренние белки, обеспечивающие правильную упаковку генома, а также выполняют структурную и ферментативную функции. Вирусные ферменты разделяют на вирионные и вирусиндуцированные. Первые входят в состав вирионов и участвуют в транскрипции и репликации (например, обратная транскриптаза), вторые закодированы в вирусном геноме (например, РНК-полимераза орто- и парамиксовирусов или ДНК-полимераза герпесвирусов). Вирионные ферменты также подразделяют на две функциональные группы: ферменты первой группы обеспечивают проникновение вирусных нуклеиновых кислот в клетку и выход дочерних популяций; ферменты второй группы участвуют в процессах репликации и транскрипции вирусного генома. В капсидах могут присутствовать ферменты обеих групп.
Суперкапсид вируса. Одетые вирусы. Голые вирусы. Матричные белки ( М-белки ) вирусов. Репродукция вирусов
Одетые вирусы. Некоторые вирусы могут содержать поверх капсида особую оболочку -- суперкапсид, организованный двойным слоем липидов и специфичными вирусными белками, наиболее часто образующими выросты-шипы, пронизывающие липидный бислой. Такие вирусы называют "одетыми".
Образование суперкапсида происходит на поздних этапах репродуктивного цикла, обычно при отпочковывании дочерних популяций.
Липиды. Основная функция липидов -- стабилизация структуры вирусов. Деградация или утеря липидов приводит к потере инфекционных свойств, так как такие вирусные частицы теряют стабильность своего состава и, соответственно, способность к заражению клеток. Состав липидов обычно зависит от характера "почкования" вирусной частицы. Например, у вируса гриппа состав липидного бислоя аналогичен таковому в клеточных мембранах. Герпес-вирусы почкуются через ядерную мембрану, поэтому набор липидов суперкапсида отражает состав липидов ядерной мембраны. Гликопротеины входят в состав поверхностных структур суперкапсида (например, "шипов"). Сахара, входящие в состав гликопротеинов, обычно происходят из клетки-хозяина. Поверхностные белки "голых" вирусов обеспечивают взаимодействие вирусов с клеточными рецепторами и последующее проникновение в клетку путём эндоцитоза. Большинство "одетых" вирусов имеют поверхностные специальные F-белки [от лат. fusio, слияние], обеспечивающие слияние вирусных суперкапсидов и клеточных мембран. Поверхностные белки -- важный компонент, облегчающий проникновение вирусов в чувствительные клетки. Их характерное свойство -- способность связываться с рецепторами на поверхности эритроцитов и агглютинировать их. Способность к гемагглютинации широко используют для определения количества вирусов.
Вирусы, не имеющие суперкапсида, называют "голыми". Как правило, они резистентны к действию эфира и более устойчивы к денатурации.
Матричные белки ( М-белки ) вирусов
Негликозилированные матричные белки (М-белки) формируют структурный слой на внутренней поверхности суперкапсида и способствуют взаимодействию его с белками нуклеокапсида, что важно на заключительных этапах самосборки вирионов.
Вирусы не способны к самостоятельному размножению. Синтез вирусных белков и воспроизведение копий вирусного генома -- необходимые условия для появления дочерней популяции -- обеспечивают биосинтетические процессы клетки-хозяина. При этом белковые макромолекулы и нуклеиновые кислоты образуются отдельно, после чего происходит сборка дочерних популяций. Другими словами, для вирусов характерен дизъюнктивный (разобщённый) тип репродукции, осуществляемый при взаимодействии вируса с инфицируемой клеткой.
Реализация репродуктивного цикла в существенной степени зависит от типа инфицирования клетки и характера взаимодействия вируса с чувствительной (могущей быть инфицированной) клеткой.
Вирусы (Vira) – микроорганизмы, имеющие ультрамикроскопические размеры (нм), неимеющие клеточного строения и состоящие из нуклеиновой кислоты, упакованной в белковую оболочку – капсид (некоторые могут иметь внешнюю оболочку – суперкапсид). Вирусы не имеют собственных метаболических систем. Неспособны к росту и бинарному делению. Абсолютные внутриклеточные паразиты. Внеклеточная форма существования называется вирионом. Могут иметь палочковидную, цилиндрическую, нитевидную, сферическую, кубовидную форму и величину: самые мелкие вирусы близки к размерам крупных белковых молекул, самые крупные — мельчайшим бактериям
Нуклеиновая кислота вируса может быть двунитчатой и однонитчатой, непрерывной и фрагментированной, линейной и кольцевой. По типу нуклеиновой кислоты вирусы подразделяются на РНКовые (ортомиксовирусы, парамиксовирусы, рабдовирусы, пикорнавирусы, ретровирусы) и ДНКовые (поксвирусы, герпесвирусы, аденовирусы, паповавирусы).
Суперкапсид – особая оболочка поверх капсида, организованная двойным слоем липидов и специфичными вирусными белками, наиболее часто образующими выросты-шипы, пронизывающие липидный бислой. Образование суперкапсида происходит на поздних этапах репродуктивного цикла, обычно при отпочковывании дочерних популяций.
Липиды идентичны липидам оболочки клеток хозяина, а углеводы входят в состав вирусных гемагглютининов (антигены). Основная ф-ия липидов – стабилизация структур вирусов. Деградация или утеря липидов приводит к потере инфекционных свойств.
Гликопротеиды входят в состав поверхностных структур суперкапсида.
Поверхностные белки – важный компонент облегчающий проникновение вирусов в чувствительные клетки. Их характерное свойство – способность связываться с рецепторами на поверхности эритроцитов и агглютинировать их. Способность к гемагглютинации широко используют для определения количества вирусов.
Вирионы имеют единую схему организации. В центре вириона располагается нуклеиновая кислота вируса (какая-либо одна — или ДНК, или РНК).
По своему составу вирусные нуклеиновые кислоты не отличаются от нуклеиновых кислот прокариотов и эукариотов, а вот их строение может быть различным. Это могут быть одно- или двунитевые, линейные или кольцевые, цельные или фрагментированные молекулы или ДНК, или РНК.
Тип нуклеиновой кислоты (ДНК или РНК) и ее строение —
важнейший таксономический признак вирионов.
Вирусная нуклеиновая кислота покрыта белковой оболочкой, которую называют капсидной.
Капсидная оболочка состоит из отдельных субъединиц — капсомеров, их количество может быть различным. Белки капсидной оболочки обычно простые и способны к самосборке. Пространственная организация белков капсидной оболочки, их взаиморасположение определяют тип симметрии нуклеокапсида:
Тип симметрии нуклеокапсида — еще один важный таксономический критерий, позволяющий дифференцировать вирусы. Простейшие вирусы представляют собой нуклеокапсид. Наличие или отсутствие в строении вириона суперкапсидной оболочки (поверх капсидной) — еще один из важнейших таксономических признаков вирусов.
Суперкапсид — это сложноорганизованная структура, включающая белковый, углеводный и липидный компоненты, наличие липидов делает вирусы, имеющие суперкапсидную оболочку, чувствительными к эфиру.
Белки суперкапсидной оболочки — это сложные белки. В состав суперкапсидной оболочки могут входить элементы клетки хозяина.
1.Функция вирусных нуклеиновых кислот независимо от их типа состоит в хранении и передаче генетической информации. Вирусные ДНК могут быть линейными (как у эукариотов) или кольцевыми (как у прокариотов), однако в отличие от ДНК тех и других она может быть представлена однонитевой молекулой. Вирусные РНК имеют разную организацию (линейные, кольцевые, фрагментированные, однонитевые и двунитевые), они могут быть представлены плюс- или минус-нитями. Плюс-нити функционально тождественны и-РНК, т. е. способны транслировать закодированную в них генетическую информацию на рибосомы клетки хозяина.
Минус-нити не могут функционировать как и-РНК, и для трансляции содержащейся в них генетической информации необходим синтез комплементарной плюс-нити. РНК плюс-нитевых вирусов, в отличие от РНК минус-нитевых, имеют специфические образования, необходимые для узнавания рибосомами. У двунитевых как ДНК-, так и РНК-содержащих вирусов информация обычно записана только в одной цепи, чем достигается экономия генетического материала.
2. Вирусные белки по локализации в вирионе делятся:
• белки суперкапсидной оболочки;
Белки капсидной оболочки у нуклеокапсидных вирусов выполняют защитную функцию — защищают вирусную нуклеиновую кислоту от неблагоприятных воздействий — и рецепторную (якорную) функцию, обеспечивая адсорбцию вирусов на клетках хозяина и проникновение в них.
Белки суперкапсидной оболочки, как и белки капсидной оболочки, выполняют защитную и рецепторную функции. Это сложные белки — липо- и гликопротеиды. Некоторые из этих белков могут формировать морфологические субъединицы в виде шипованных отростков и обладают свойствами гемагглютининов (вызывают агглютинацию эритроцитов) или нейраминидазы (разрушают нейраминовую кислоту, входящую в состав клеточных стенок).
Отдельную группу составляют геномные белки, они ковалентно связаны с геномом и образуют с вирусной нуклеиновой кислотой рибо- или дезоксирибонуклеопротеиды. Основная функция геномных белков — участие в репликации нуклеиновой кислоты и реализации содержащейся в ней генетической информации, к ним относятся РНК-зависимая РНК-полимераза и обратная транскриптаза.
В отличие от белков капсидной и суперкапсидной оболочки это не структурные, а функциональные белки. Все вирусные белки выполняют и функцию антигенов, поскольку являются продуктами вирусного генома и, соответственно, чужеродными для организма хозяина. Представители царства Vira по типу нуклеиновой кислоты делятся на 2 подцарства — рибовирусные и дезоксирибовирусные. В подцарствах выделяют семейства, рода и виды.
Принадлежность вирусов к тому или иному семейству (всего их 19) определяется:
•строением и структурой нуклеиновой кислоты;
• типом симметрии нуклеокапсида;
• наличием суперкапсидной оболочки. Принадлежность к тому или иному родуи виду связана с другими биологическими свойствами вирусов:
• размером вирионов (от 18 до 300 нм);
• способностью размножаться в культурах ткани и курином эмбрионе;
• характером изменений, происходящих в клетках под воздействием вирусов;
• кругом восприимчивых хозяев.
Вирусы — возбудители болезней человека относятся к 6 ДНК-содержащим семействам (поксвирусы, герпесвирусы, гепаднавирусы, аденовирусы, паповавирусы, парвовирусы) и 13 семействам РНК-содержащих вирусов (реовирусы, тогавирусы, флавирусы, коронавирусы, парамиксовирусы, ортомиксовирусы, рабдовирусы, бунъявирусы, аренавирусы, ретровирусы, пикорнавирусы, калицивирусы, филовирусы).
ТАСС, 17 февраля. Молекулярные биологи из США получили первую трехмерную реконструкцию белков оболочки коронавируса 2019-nCoV, который вызвал вспышку пневмонии в Китае. Эти материалы помогут ученым создать вакцины и лекарства от данной болезни, пишут исследователи в статье, опубликованной в электронной научной библиотеке bioRxiv.
"Мы нашли биофизические и структурные свидетельства того, что белки оболочки 2019-nCoV прикрепляются к рецепторам заражаемых клеток сильнее, чем это делает вирус атипичной пневмонии (SARS). Вдобавок, мы подтвердили, что несколько уже известных антител, которые нейтрализуют SARS, не могут соединяться с белками нового коронавируса", - отмечают исследователи.
Биологи из Техасского университета в Остине (США) и их коллеги из Национального института аллергии и инфекционных болезней (США) с помощью криоэлектронной микроскопии впервые реконструировали структуру оболочки вируса с очень большим разрешением. Таким образом они приблизились к раскрытию точных механизмов распространения 2019-nCoV от человека к человеку
Для этого ученые заставили культуру человеческих эмбриональных клеток воспроизводить фрагменты вирусной белковой оболочки. Исследователи выделили эти частицы из клеток, специальным образом заморозили их и рассмотрели с помощью криоэлектронного микроскопа, получив в итоге трехмерное изображение их структуры.
Эти снимки подтвердили, что в целом белок RBD у SARS и 2019-nCoV устроен похоже. Однако они неожиданно обнаружили, что новый коронавирус связывается с рецепторами ACE2 не слабее, а гораздо сильнее SARS. Это может объяснять высокую заразность и неожиданно большую скорость распространения новой болезни, которую вызывает коронавирус. Вдобавок ученые открыли небольшие вставки в ключевой части белка RBD, аналоги которых присутствуют у самых заразных форм вируса гриппа.
Подобные добавления, а также другие мелкие различия в структуре белков, как отмечают исследователи, сделали новый коронавирус неуязвимым для атак трех типов антител, которые ученые выделили из крови носителей SARS. Как надеются ученые, полученные ими фотографии помогут открыть лекарства, которые могут нейтрализовать вирус еще до проникновения в клетки или мешать ему размножаться внутри них.
Новый коронавирус
Сейчас число подтвержденных случаев заболевания, вызванного коронавирусом нового типа, в Китае превысило 70,5 тыс. человек, умерло от нее 1770 человек, выздоровело – 10,8 тыс. Инфекция зарегистрирована почти во всех регионах КНР, в том числе в Пекине и Шанхае. Также случаи заболевания выявили в десятках других государств, в том числе в России, США, Таиланде, Франции, Индии и Японии. В конце января Всемирная организация здравоохранения объявила режим международной чрезвычайной ситуации, связанный с этой вспышкой пневмонии.
Первые свидетельства о появлении вируса появились в декабре 2019 года. Уже 31 декабря власти Китая информировали Всемирную организацию здравоохранения (ВОЗ) о вспышке неизвестной пневмонии в Ухане – крупном торгово-промышленном центре КНР с населением более 11 млн человек. 7 января китайские специалисты установили возбудителя болезни — коронавирус 2019-nCoV, 11 февраля ВОЗ присвоил официальное имя той форме пневмонии, которую вызывает этот вирус — COVID-19 (CoronaVirus Disease 2019).
Новый вирус относится к той же группе, что и хорошо известные SARS и MERS, возбудители атипичной пневмонии и ближневосточной лихорадки. За последние десять лет и тот, и другой вирус унесли жизни нескольких сотен людей на Ближнем Востоке и Восточной Азии, а также неоднократно вызывали эпидемии, распространяясь через верблюдов и домашнюю птицу. Изначальным переносчиком вируса 2019-nCoV, как предполагают ученые, выступали летучие мыши.
Все три возбудителя болезней относятся к так называемым коронавирусам. Заражение ими вызывает схожие симптомы: лихорадку, кашель, проблемы с дыханием и постоянное отхаркивание. Инкубационный период длится несколько недель, затем практически мгновенно начинается сильнейшая лихорадка. Как правило, около половины больных погибает от истощения, осложнений или сопутствующих инфекций при отсутствии ухода за ними.
ВИРУСОЛОГИЯ
1. Вирусы относятся к живым, но их нельзя назвать орг-мами. Отличия от живых систем:
1) малые размеры;
2) очень простое строение вириона – геном (ДНК или РНК) и капсид (белковая оболочка);
3) нет клеточного строения – нет цитоплазмы, мембран, рибосом;
4) у вириона есть только 1 вид нуклеиновой к-ты – ДНК или РНК;
5) нет способности к росту и бинарному делению;
6) особая ступень паразитизма – вирусы паразитируют на молекулярном (генетическом) уровне – это отличие от гельминтов (паразитируют в орг-ме) и малярийных плазмодиев и гонококков (паразитируют в клетке);
7) способны объединять собственный геном с геномом клетки-хозяина;
8) не могут существовать без клетки-хозяина;
9) могут иметь фрагментированный геном.
Вирусы – облигатные паразиты, так как не могут существовать без клетки-хозяина, потому что его репродукция (увеличение численности вирусных частиц) возможна только в клетке хозяина. Вирусы не способны к росту и делению.
Вирион, капсид, нуклеокапсид, тип симметрии, суперкапсид.
Вирио́н — полноценная вирусная частица, состоящая из нуклеиновой кислоты и капсида (оболочки, состоящей из белка и, реже, липидов) и находящаяся вне живой клетки.
Основной компонент вириона – капсид(белковая оболочка), кот-й содержит внутри нуклеиновую к-ту. Нуклеокапсид – нуклеиновая к-та, окружённая капсидом.
Капсиды построены из белковых субъединиц (капсомеров). Капсомер – молекула белка. У многих вирусов, кроме нуклеиновой к-ты, есть ещё специальные ферменты.
По типу строения вирионов выделяют:
1) спиральный тип симметрии – вирусы гриппа, парагриппа и др;
2) квазисферический – кубический или икосаэдральный тип симметрии;
3) смешанный у Т-чётных бактериофагов – головка в виде многогранников, хвост – спиралью.
Тип симметрии определяется только нуклеокапсидом, суперкапсид при этом не учитывают. Суперкапсид – это дополнительная оболочка, или пеплос.
Критерии современной классификации вирусов.
1.Нуклеиновая кислота: тип, число нитей, процентное содержание, молекулярный вес, содержание гуанина и цитозина.
2.Морфология: тип симметрии или псевдосимметрия, число капсомеров для вирусов с кубической симметрией, наличие внешней липопротеидной оболочки, форма, размеры вирионов.
3.Биофизические свойства: константа седиментации, плавучая плотность.
4.Белки: количество структурных белков и их локализация, аминокислотный состав.
6.Размножение в тканевых культурах: особенности репликации.
7.Круг поражаемых хозяев: особенности патогенеза инфекционного процесса; онкогенные свойства.
8.Устойчивость к физическим и химическим факторам (гамма-лучи, термоинактивация при 37 0 и 56 0 , действие жирорастворителей и отдельных катионов).
4. Типы вирусных геномов
РНК-геномы
1.Одноцепочечная единая РНК, обладающая матричной активностью (позитивная РНК) - вирус полиомиелита и др.
2.Одноцепочечная единая РНК, не обладащая матричной активностью (негативная РНК). Вирион имеет транскриптазу - парамиксовирусы, рабдовирусы и др.
3.Одноцепочечная фрагментированная РНК, не обладающая матричной активностью (негативная РНК). Вирион имеет транскриптазу - ортомиксовирусы.
4.Двухцепочечная фрагментированная РНК. Вирион имеет транскриитазу - реовирусы.
5.Вирусы, геном которых представлен двумя идентичными нитями позитивной РНК (диплоидный геном). Вирионы имеют обратную транскриптазу- ретровирусы.
ДНК-геномы
6.Одноцепочечная линейная ДНК - парвовирусы.
7.Одноцепочечная кольцевая ДНК - фаги М13, ØX174.
8.Двухцепочечная линейная ДНК - вирус герпеса и др.
9.Двухцепочечная кольцевая ДНК - паповавирусы, вирус гепатита В и др.
10.Двухцепочечная ДНК с ковалентносвязанным терминальным гидрофобным белком - аденовирусы.
11.Двухцепочечная ДНК, замкнутая на каждом конце ковалентной связью - вирус оспы.
5. Методы культивирования вирусов.
Вирусы размножаются только в живых клетках. Культивирование вируса происходит на уровне орг-ма подопытного животного и на уровне культуры клеток (то есть вне орг-ма). Вирусы имеют тканевую и типовую специфичность. Поэтому при выделении неизвестного вируса одномоментно заражают 3-4 культуры клеток. Чаще используют эмбриональные ткани (куриный эмбрион). Вирусы оспы хорошо размножаются в хорион-аллантоисной оболочке, вирус паротита – в амнионе, вирус гриппа – в амнионе и аллантоисе, вирус бешенства – в желточном мешке. Берут 12-дневные эмбрионы.
При невозможности выделить и идентифицировать вирус стандартными методами (на культуре клеток и куриных эмбрионах) инфекционный материал вводят лабораторным животным (мыши, кролики, обезьяны), после развития инфекционного процесса проводят повторное заражение чувствительных клеточных культур.
Заражение лабораторных животных.
Методы заражения животных разнообразны: внутрибрюшинный, внутривенный, внутримышечный, интраназальный, заражение в мозг и другие.
Заражение в мозг. (Метод применяют при работе с нейротропными вирусами). Для заражения чаще используют белых мышей. Левой рукой плотно прижимают мышь к столу, большим и указательным пальцами оттягивают кожу головы назад. Туберкулиновым шприцем с предохранительной муфтой на игле прокалывают лобную кость несколько латеральнее средней линии и вводят 0,02-0,03 мл материала. Игла вводится на глубину 1,5-2 мм, при этом отчетливо ощущается "провал" в полость черепа.
При заражении новорожденных мышей (2-3-дневного возраста) их лучше брать руками в перчатках, чтобы после заражения мышата не имели постороннего запаха (пота, дезинфицирующих веществ, антибиотиков и т.д.), так как самка съедает мышат, имеющих посторонний запах. Материал вводят в количестве 0,01 мл. Вытекающую жидкость удаляют сухим стерильным ватным тампоном без дезинфицирующих веществ. После заражения мышат помещают в отдельную банку (в свое гнездо), а через 20-30 минут подсаживают к ним самку.
Больных мышат самка также съедает. Поэтому надо уловить момент извлечения зараженных животных для завершения опыта. Первые два дня просматривают мышат 1-2 раза в день, а затем чаще. Через 3-4 дня здоровый мышонок в два раза больше зараженного.
Культуры клеток (тканей).
Культуры ткани - это клетки ткани выращенные вне организма на специальной питательной. среде. Клетки ткани в искусственных условиях сохраняю? присущи им обмен и восприимчивость к определенным вирусам. Для культивирования вирусов особенно пригодны клетки с быстрым ростом. По этой причине широко применяют эмбриональные ткани (фибробласты куриных эмбриовов, клетки человека к др., а также культуры тканей опухолей (клетки-Неla, Нер-2 и др.).
Кулътивирование клеток может призойти в специальных флаконах (колбы-матрацы, флаконы Карреля) и в пробирках. Культура клеток для роста должна иметь какую-либо опору, например, стенку пробирки.
В выросшую культуру ткани, которая покрывает стенку сосуда в виде однослойного клеточного пласта, засевают материал, содержащий вирус. Работу производят в стерильных условиях. Для подавления роста микрофлоры вируссодержащий материал предварительно обрабатывают антибиотиками, чаще пенициллином и стрептомицином. Питательной средой для культуры ткани могут быть различные растворы, сослав которых приближается к составу жидкости организма (синтетическая среда 199, солевой раствор Хенкса с сывороткой, гидролизат лактальбумина с сывороткой и другие).
9. Признаки размножения вирусов в курином эбрионе."эффект карликовости" (замедление роста), мумификация, шарообразная форма зародыша и гибель на 3—6-й день после заражения.
Сущность метода бляшек.
В основе метода лежит появление в монослое зараженных вирусом клеток обесцвеченных участков, состоящих из дегенерированных клеток. Эти участки, получившие название бляшек, представляют собой колонии вируса, образующегося из одной вирусной частицы.
Метод заключается в следующем. В специальном флаконе на стенке монослой клеток, затем удаляют питательную среду. Клетки заражаю вирусом и заливают агаром, содержащим индикатор нейтральный красный. Там, где происходит рост клеток, среда изменится в кислую сторону и индикатор окрасится в розовый цвет. На тех участках, где клетки погибли под действием вируса, рН среды и, следовательно, цвет индикатора не изменяется. Такие островки неокрашенной среды имеют вид беловатых бляшек.
Типы вирусных инфекций.
1.Вирусы с непродолжит пребыванием вируса в организие
-острая; -бессимптомная; -абортативная инфекция
2. Вирусы с продолжит пребывание вируса в организме
-латентные; -Хронические; -медленные
Что такое вирогения?
(от вирусы и греч. -geneia — создание, происхождение), форма сосуществования вируса с клеткой, при к-рой геном вируса включается в хромосому клетки. При В. не происходит автономной репродукции вируса, а его нуклеиновая к-та реплицируется совместно с ДНК клетки-хозяина. Вирусы, обусловливающие В., наз. умеренными. К ним относятся бактериофаги. вызывающие лизогению, а также онкогенные вирусы, под действием к-рых в заражённых клетках наблюдаются наследств, изменения (трансформация), проявляющиеся в их неограниченном росте и делении. В трансформированных клетках геном вируса содержится в виде вирусной ДНК — про-вируса.
Основные классы плазмид.
КЛАСС | ФУНКЦИЯ |
F-плазмиды | Донорные функции |
R-плазмиды | Устойчивость к лекарственным препаратам |
Col-плазмиды | Синтез колицинов |
Ent-плазмиды | Синтез энтеротоксинов и факторов адгезии |
Hly-плазмиды | Синтез гемолизинов |
Биодеградативные плазмиды | Разрушение различных органических соединений |
Что такое фаготипирование?
Фаготипирование (лизотипирование, фаготипаж) — это метод дифференциации бактерий при помощи бактериофагов. Микробы можно типировать путем изучения свойств их умеренных фагов и по чувствительности к набору специфических бактериофагов.
Наибольшее значение фаготипирование имеет для совершенствования эпидемиологического анализа и диагностики инфекционных заболеваний.
ВИРУСОЛОГИЯ
1. Вирусы относятся к живым, но их нельзя назвать орг-мами. Отличия от живых систем:
1) малые размеры;
2) очень простое строение вириона – геном (ДНК или РНК) и капсид (белковая оболочка);
3) нет клеточного строения – нет цитоплазмы, мембран, рибосом;
4) у вириона есть только 1 вид нуклеиновой к-ты – ДНК или РНК;
5) нет способности к росту и бинарному делению;
6) особая ступень паразитизма – вирусы паразитируют на молекулярном (генетическом) уровне – это отличие от гельминтов (паразитируют в орг-ме) и малярийных плазмодиев и гонококков (паразитируют в клетке);
7) способны объединять собственный геном с геномом клетки-хозяина;
8) не могут существовать без клетки-хозяина;
9) могут иметь фрагментированный геном.
Вирусы – облигатные паразиты, так как не могут существовать без клетки-хозяина, потому что его репродукция (увеличение численности вирусных частиц) возможна только в клетке хозяина. Вирусы не способны к росту и делению.
Вирион, капсид, нуклеокапсид, тип симметрии, суперкапсид.
Вирио́н — полноценная вирусная частица, состоящая из нуклеиновой кислоты и капсида (оболочки, состоящей из белка и, реже, липидов) и находящаяся вне живой клетки.
Основной компонент вириона – капсид(белковая оболочка), кот-й содержит внутри нуклеиновую к-ту. Нуклеокапсид – нуклеиновая к-та, окружённая капсидом.
Капсиды построены из белковых субъединиц (капсомеров). Капсомер – молекула белка. У многих вирусов, кроме нуклеиновой к-ты, есть ещё специальные ферменты.
По типу строения вирионов выделяют:
1) спиральный тип симметрии – вирусы гриппа, парагриппа и др;
2) квазисферический – кубический или икосаэдральный тип симметрии;
3) смешанный у Т-чётных бактериофагов – головка в виде многогранников, хвост – спиралью.
Тип симметрии определяется только нуклеокапсидом, суперкапсид при этом не учитывают. Суперкапсид – это дополнительная оболочка, или пеплос.
Читайте также: