Организация генетического аппарата у вирусов
ВНИМАНИЕ! САЙТ ЛЕКЦИИ.ОРГ проводит недельный опрос. ПРИМИТЕ УЧАСТИЕ. ВСЕГО 1 МИНУТА.
КАРАГАНДИНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ
Кафедра молекулярной биологии и медицинской генетики
СРС
Выполнила: ст. группы 1-032 ОМ
Проверила: Авдиенко О.В.
Караганда 2016г.
Цель: Изучение генетического материала внеклеточных организмов.
Задачи:
1) Многоуровневая организация генома.
2) ДНК- и РНК-содержащие вирусы.
3) Изучение вирусных заболеваний.
Содержание:
II. Особенности генетическго аппарата вирусов ………………………5 стр.
III. ДНК-содержащие вирусы…………………………………………… 6 стр.
IV. РНК-содержащие вирусы…………………………………………7-8 стр.
V. Вирусные заболевания…………………………………………….8-9 стр.
VI. Характеристика рабдовирусов, пикорновирусов…………………10 стр.
VIII. Список используемой литературы …………………………………12 стр.
I. Введение
Существует большая группа живых существ, не имеющих клеточного строения. Эти существа носят названия вирусов (лат "вирус" - яд) и представляют неклеточные формы жизни. Вирусы нельзя отнести ни к животным, ни к растениям. Они исключительно малы, поэтому могут быть изучены только с помощью электронного микроскопа.
Вирусы способны жить и развиваться только в клетках других организмов. Вне клеток живых организмов вирусы жить не могут, и многие из них во внешней среде имеют форму кристаллов. Поселяясь внутри клеток животных и растений, вирусы вызывают много опасных заболеваний. К числу вирусных заболеваний человека относятся, например, корь, грипп, полиомиелит, оспа. Среди вирусных болезней растений известна мозаичная болезнь табака, гороха и других культур; У больных растений вирусы разрушают хлоропласты, и пораженные участки становятся бесцветными.
Вирусы открыл русский ученый Д. И. Ивановский в 1892 г. Каждая вирусная частица состоит из небольшого количества ДНК или РНК, т. е. генетического материла, заключенного в белковую оболочку. Эта оболочка играет защитную роль. Известны также вирусы, поселяющиеся в клетках бактерий. Их называют бактериофагами или фагами (греч "фагос" - пожирающий). Бактериофаги полностью разрушают бактериальные клетки и потому могут быть использованы для лечения бактериальных заболеваний, например дизентерии, брюшного тифа, холеры. Строений вирусов дает основание считать их неклеточными существами.
II. Особенности генетического аппарата вирусов
В 60-е годы, ознаменовавшиеся первыми успехами молекулярной биологии вирусов, начался и закат концепции о вирусах как организмах, и эти противоречивые процессы (триумф и закат) нашли свое отражение на 1-м Международном симпозиуме [Cold Spring Harbor, 1962]. Уже тогда одновременно с введением понятия “вирион” были показаны, с одной стороны, отличия их строения от строения клеток и даже был введен термин “архитектура” вирионов.
С другой стороны, были обобщены факты, указывавшие на совершенно отличный от клеток тип размножения, который некоторое время называли дизъюнктивной репродукцией, подчеркивая разобщенность — временную и территориальную — синтеза генетического материала (РНК, ДНК) и белков вирусов. В докладе на упоминавшемся симпозиуме был также сформулирован основной критерий отличия вирусов от других организмов: генетический материал вирусов является одним из двух типов нуклеиновых кислот (РНК или ДНК), в то время как организмы имеют оба типа нуклеиновых кислот. У большинства живых организмов нуклеиновые кислоты содержатся в ядре и цитоплазме. Вирусы хоть и являются неклеточными структурами, но также содержат нуклеиновые кислоты. По типу содержащейся нуклеиновой кислоты вирусы разделяют на 2 класса: ДНК-содержащие (вирус гепатита В, герпеса и др.) и РНК-содержащие вирусы (тогавирусы, пикорнавирусы, вирус гриппа, парагриппа, ВИЧ, гепатит А). У вирусов, как и у прочих живых организмов, информация и структуре различных белков (генетическая информация) закодирована в структуре нуклеиновых кислот в виде специфических последовательностей нуклеотидов (составных частей ДНК и РНК). Гены вирусных нуклеиновых кислот кодируют разнообразные ферменты и структурные белки. ДНК и РНК вирусов являются материальным субстратом наследственности и изменчивости этих микроорганизмов – двух основных составляющих в эволюции вирусов в частности и всей живой природы в целом.
Вирусы являются автономными генетическими структурами, способными функционировать только в клетках, с разной степенью зависимости от клеточных систем синтеза нуклеиновых кислот и полной зависимостью от клеточных белоксинтезирующих и энергетических систем, подвергающихся самостоятельной эволюции. Если рассматривать вирусы в плане паразитологии, то их паразитирование следует признать не только внутриклеточным (как это имеет место у риккетсий и хламидий), а паразитизмом генетическим, так как взаимодействие вируса с клеткой является, прежде всего взаимодействием двух геномов — вирусного и клеточного.
Вирусы являются одним из излюбленных объектов молекулярной генетики благодаря простому строению и малой молекулярной массе их геномов, которая в 106 раз меньше массы генома эукариотической клетки. Организация генетического аппарата у ряда вирусов, например у sv40, настолько сходна с таковой генов эукариотической клетки, что получила название минихромосомы. Минихромосома широко используется для изучения организации и репликации ДНК.
Структурная организация генома клетки
В составе генома имеются структурные гены, кодирующие определенные биополимеры (белки или РНК), и регуляторные гены, которые контролируют функцию структурных генов. Регуляция происходит с помощью белковых продуктов регуляторных генов — репрессоров, подавляющих активность структурных генов. Регуляторными участками генов, контролирующих транскрипцию, являются усилитель транскрипции (enhancer) и промотор — область, предшествующая структурным генам, и определяющая место специфического связывания РНК-полимеразы.
Характерной особенностью генов эукариотической клетки является их мозаичная структура, т. е. прерывистость гена. В составе гена, кодирующего один белок, кодирующие участки прерываются вставочными последовательностями, которые не несут никакой кодирующей информации и не транслируются. Кодирующие участки гена называются экзонами, а вставки — нитронами.
Строение эукариотического гена и его транскрипция.
а строение эукариотического гена 8У40: 1—усилитель транскрипции; 2—
промотор; 3— инициация репликации ДНК вируса (origin); 4— интроны; 5— экзоны (кодирующие области гена); 6— терминирующая последовательность ААТААА; стрелка обозначает участок начала транскрипции, б — схема сплайсинга при созревании иРНК: 1—экзоны, 2—интроны, 3—зрелая иРНК.
Основной особенностью вирусного генома является то, что наследственная информация у вирусов может быть записана как на ДНК, так и на РНК. Геном ДНК-содержащих вирусов двухнитевой (исключение составляют парвовирусы, имеющие однонитевую ДНК), несегментированный и проявляет инфекционные свойства. У вирусов, принадлежащих к родам Poxvirus и Hepadnavirus геном представлен двумя цепочками ДНК разной длины. Геном большинства РНК-содержащих вирусов однонитевой (исключение составляют реовирусы и ретровирусы, обладающие двунитевыми геномами) и может быть сегментированным (представители родов Retrovirus, Orthomyxovirus , Arenavirus и Reovirus ) или несегментированным.
Вирусные РНК в зависимости от выполняемых функций подразделяются на две группы. К первой группе относятся РНК, способные непосредственно транслировать генетическую информацию на рибосомы чувствительной клетки, т.е выполнять функции иРНК и мРНК. Их называют плюс-нити РНК и обозначают как +РНК (позитивный геном). Они имеют характерные окончания (`шапочки') для специфического распознавания рибосом.
У другой группы вирусов РНК не способна транслировать генетическую информацию непосредственно на рибосомы и функционировать как иРНК. Такие РНК служат матрицей для образования иРНК, т.е. при репликации первоначально синтезируется матрица (+РНК) для синтеза -РНК. Такой тип РНК определяют, как минус-нить и обозначают -РНК (негативный геном). У вирусов этой группы репликация РНК отличается от транскрипции по длине образующихся молекул: при репликации длина РНК соответствует материнской нити, а при транскрипции образуются укороченные молекулы иРНК. Молекулы +РНК проявляют инфекционность, а -РНК не проявляют инфекционные свойства и для воспроизведения должны транскрибироваться в +РНК.
Исключение составляют ретровирусы, которые содержат однонитевую +РНК, служащую матрицей для вирусной РНК-зависимой ДНК-полимеразы (обратной транскриптазы). При помощи этого фермента информация переписывается с РНК на ДНК, в результате чего образуется ДНК-провирус, интегрирующийся в клеточный геном.
Сайт СТУДОПЕДИЯ проводит ОПРОС! Прими участие :) - нам важно ваше мнение.
Организация генома митохондрий.
Существуют два типа цитоплазматических ДНК: одни находятся в митохондриях эукариот, другие -в хлоропластах зеленых растений и водорослей. Как и все цитоплазматические элементы, они наследуются по материнской линии, а не по законам Менделя! Большая часть белков этих органелл, закодированная в ядерной ДНК, синтезируется в цитоплазме и затем переходит в органеллу. Однако некоторые белки митохондрий и хлоропластов и все их РНК кодируется в ДНК самих органелл и в них же синтезируются. Таким образом, органеллы — это результат объединенных усилий двух геномов и двух трансляционных аппаратов. РНК-компоненты рибосом органелл, а также тРНК, использующиеся при трансляции, кодируются геномами митохондрий и хлоропластов.
Размеры генома хлоропластов у всех исследованных организмов сходны, тогда как митохондриальные геномы у растений намного больше, чем у животных.
Все митохондрии и хлоропласты содержат по несколько копий собственной геномной ДНК. Эти молекулы ДНК обычно распределены в виде отдельных групп в матриксе митохондрий и в строме хлоропластов, где они прикреплены к внутренней мембране. Способ упаковки ДНК неизвестен. По структуре геном более сходен с бактериальным геномом: например, как и у бактерий, у них нет гистонов.
Геном вирусов включает:
– Структурные гены, которые кодируют белки. Занимают примерно 95 % вирусной хромосомы. Белки вирусов можно разделить на несколько групп: структурные, ферменты, регуляторы.
– Регуляторные последовательности, которые не кодируют белки: промоторы, операторы и терминаторы.
– Прочие некодирующие участки (сайты), в том числе:
– участок attP, обеспечивающий интеграцию вирусной хромосомы в хромосому клетки–хозяина;
– участки cos – липкие концевые участки линейных вирусных хромосом, обеспечивающие замыкание линейной хромосомы в кольцевую форму.
Гены, кодирующие рРНК и тРНК, в геноме вирусов обычно отсутствуют. Однако в геноме крупного фага Т4 имеются гены, кодирующие несколько тРНК.
Геном вирусов отличается высокой плотности упаковки информации. Например, у фага φХ174 в пределах одного гена может располагаться еще один ген. В частности, ген В находится в пределах гена А, а ген Е – в пределах гена D. У мелкого РНК-содержащего фага f2 ген регуляторного белка, блокирующего лизис (созревание вирионов и разрушение клетки), перекрывается с двумя другими генами, удаленными друг от друга.
Особенности вирусов эукариот
У вирусов эукариот обнаружены следующие особенности:
1. Интрон-экзонная структура генов.
2. Модификация белков после синтеза полипротеинов: весь геном транскрибируется в виде одной молекулы мРНК, которая служит матрицей для синтеза полипротеина – одного гигантского инертного белка, и лишь затем происходит расщепление полипротеина на белки, выполняющие определенные функции.
3. Перекрывание генов (обезьяний вирус SV 40, вирус гриппа).
Вирионы ДНК-содержащих вирусов содержат ДНК. Объемом ДНК определяется количество белков в вирионе: один полипептид кодируется отрезком ДНК длиной примерно 1 тысяча нуклеотидов (нуклеотидных пар). После проникновения в клетку вирусная ДНК становится матрицей для синтеза ДНК и РНК.
Примеры организации генома ДНК-содержащих вирусов
1. Кольцевая двухцепочечная ДНК длиной около 5 тпн.
– Обезьяний вирус SV 40. Мелкий эукариотический вирус. Вирионы в виде икосаэдра. Капсид белковый. Используется в генной инженерии как вектор переноса генов. Кодирует 5 белков.
– Вирусы бородавок человека.
2. Кольцевая одноцепочечная ДНК длиной около 5 тн; может быть как кодирующей, так и антикодирующей.
– Мелкие бактериофаги типа М13. Не разрушают клетку. Капсид включает 8 белков.
– Вирус золотистой мозаики фасоли.
3. Линейная двухцепочечная ДНК длиной 30-150 тпн.
– Бактериофаги типа Т4. Вирионы крупные. Белковый капсид из 130 белков включает: головку, хвостовой отдел и хвостовые нити. Эти вирусы могут существовать в виде профага длительное время.
– Аденовирусы млекопитающих и человека. Вирионы средних размеров в виде икосаэдра. Капсиды белковые. Вызывают ОРВИ, конъюнктивиты, желудочно-кишечные заболевания, иногда обладают онкогенными свойствами.
– Вирусы оспы, герпеса и им подобные. Вирионы крупные. Имеется липопротеиновая оболочка.
4. Линейная одноцепочечная ДНК длиной около 5 тн; ДНК может быть как кодирующей, так и антикодирующей. У человека известны как спутники аденовирусов.
5. Двухцепочечная ДНК, замкнутая в кольцо из перекрывающихся сегментов. Длина ДНК – 3-8 тн.
– Вирус гепатита В. Вирион сферический, средних размеров. Имеется дополнительная оболочка из вирусных и клеточных белков. Кодирует 5 белков.
– Вирус мозаики цветной капусты (CaMV). Промотор 35S-RNA (CaMV35S) этого вируса широко используется в традиционной генной инженерии для создания генетических конструкций.
К РНК-содержащим вирусам относятся многие вирусы растений, возбудители заболеваний человека и животных: вирус полиомиелита, вирусы гриппа А, В и С, вирусы паротита (свинки), кори, чумы плотоядных животных (чумки), бешенства, вирус иммунодефицита человека (ВИЧ). В отдельную группу выделяются арбовирусы, которые переносятся членистоногими (клещами, москитами), например, вирусы клещевого энцефалита, желтой лихорадки. Многие РНК-содержащие вирусы вызывают ОРВИ (например, коронавирусы), желудочно-кишечные заболевания (реовирусы птиц, млекопитающих и человека). Некоторые РНК-содержащие вирусы используются в биотехнологии, например, вирусы полиэдроза насекомых.
Вирионы РНК-содержащих вирусов содержат РНК. После проникновения в клетку вирусная РНК становится матрицей для синтеза ДНК и РНК.
Примеры организации генома РНК-содержащих вирусов
1. Линейная одноцепочечная мРНК (плюс–цепь) длиной около 4 тн; в виде единой молекулы или в виде нескольких разных молекул. Плюс-цепь сразу же может использоваться для трансляции. Вегетативно-репродуктивная фаза этих вирусов протекает в цитоплазме. В плюс-цепи закодирована РНК-репликаза (РНК-зависимая РНК-полимераза). Представители:
– Вирус табачной мозаики (ВТМ) – сегментированная РНК. Вирион нитевидный (18х300 нм). ВТМ открыт Д.И. Ивановским в 1982 г.
– Вирус полиомиелита – несегментированная РНК. Вирионы мелкие, в виде икосаэдра. Капсид белковый.
– Вирус бешенства. Нитевидный вирион. Имеется дополнительная липопротеиновая оболочка.
– Арбовирусы (переносятся членистоногими: клещами, москитами) – вирусы клещевого энцефалита, желтой лихорадки. Морфология и размеры вирионов разнообразны, например, вирус энцефалита содержит 9 белков. Имеется дополнительная липопротеиновая оболочка.
– Мелкие бактериофаги (с несегментированной РНК).
2. Линейная одноцепочечная кРНК (минус–цепь, порядок нуклеотидов комплементарен по отношению к мРНК). Минус–цепь не может служить для трансляции и используется как матрица для синтеза плюс–цепи. Плюс-цепь служит для трансляции вирусных белков и используется как матрица для синтеза вирусной кРНК. Вегетативно-репродуктивная фаза этих вирусов также протекает в цитоплазме.
– Вирусы гриппа А, В, С. Вирус гриппа А содержит минус-цепь РНК, состоящую из 8 фрагментов. Фрагменты РНК связаны с вирусными белками и образуют спиральный нуклеокапсид. Поверх нуклеокапсида располагается гликолипопротеиновый суперкапсид. В составе вириона 10 белков. В состав суперкапсида входит два белка, определяющих антигенные свойства вируса: гемагглютинин и нейраминидаза. Кроме того, в состав вириона входит уже готовая РНК-репликаза, обеспечивающая синтез плюс-цепи на матрице минус-цепи.
– Вирусы паротита (свинки), кори, чумы плотоядных животных (чумки). Сферический вирион средних размеров. Имеется дополнительная липопротеиновая оболочка.
3. Линейная двухцепочечная РНК
– Мелкие бактериофаги. Вирионы мелкие, сферические или в виде икосаэдра. Капсид белковый.
– Вирусы полиэдроза насекомых. Вирионы мелкие, сферические или в виде икосаэдра. Капсид белковый. Используются в биотехнологии (для синтеза интерферона).
– Реовирусы птиц, млекопитающих и человека. Вирионы мелкие, сферические или в виде икосаэдра. Капсид белковый. Вызывают ОРВИ, желудочно-кишечные заболевания. РНК фрагментированная (10. 11 фрагментов), кодирует 11 белков.
4. Две линейные одноцепочечные одинаковые молекулы мРНК длиной около 10 тн. Ретровирусы. Способны интегрироваться в ДНК. В состав вирионов входит фермент обратная транскриптаза (ревертаза). Имеется дополнительная липопротеиновая оболочка. Многие ретровирусы вызывают онкологические заболевания: лейкозы, саркомы, опухоли молочных желез. К ретровирусам относится и вирус иммунодефицита человека, вызывающий СПИД.
– Вирус иммунодефицита человека (ВИЧ). Содержит одну плюс-цепь РНК, кодирует 13 белков. Сферический вирион. Имеется дополнительная липопротеиновая оболочка, включающая фрагменты мембран человека. Избирательно поражает Т–лимфоциты.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Факторы транскрипции
Инициация
Инициация транскрипции происходит на кэп-сайте кодирующем первый нуклеодид первого экзона мРНК.
ТАТА-бокслокализуется в 25-30 пн выше кэп-сайта связывая РНК-полимеразу перед кэп-сайтом. Промотор - примерно 200 пн выше кэп-сайта. Энхансеры обычно имеют длину 100-200 пн.
Элонгация
Терминация
Вновь синтезированная РНК генов связывается с ядерными белками - информомерами, подвергается различным посттранскрипционным модификациям и транспортируется из ядра для последующей трансляции.
Существенную роль в регуляции транскрипции у эукариот, помимо опосредованной взаимодействием между ДНК и белками, играют также белок-белковые взаимодействия.
Несмотря на индивидуальность набора регуляторных элементов у структурных генов эукариот, каждый из них имеет промоторный участок (ТАТА-бокс, или бокс Хогнесса) из восьми нуклеотидов, включающий последовательность TATA; последовательность ССААТ (САТ-бокс); участок из повторяющихся динуклеотидов GC (GC-бокс). Эти элементы находятся на расстоянии 25, 75 и 90 п.н. от сайта инициации соответственно:
Регуляторные элементы структурных генов эукариот. Отрицательное значение показывает, что эти элементы находятся в молекуле ДНК слева от сайта инициации транскрипции, обозначенного +1. Стрелка — направление транскрипции (по Глик Б. , Пастернак, Дж., 2002)
Транскрипция структурного гена эукариот начинается со связывания с ТАТА-боксом фактора транскрипции, который представляет собой комплекс по крайней мере из 14 белков. Затем с ним и участками ДНК, примыкающими к ТАТА-боксу, связываются другие факторы транскрипции, и, наконец, со всем этим транскрипционным комплексом связывается РНК-полимераза II. Затем при участии дополнительных факторов происходит инициация транскрипции в точке +1 . Если последовательность TATA отсутствует или существенно изменена, то транскрипция структурного гена становится невозможной.
Пример регуляции транскрипции путем взаимодействия специфических белковых факторов с ТАТА-боксом на этих рисунках ниже.
Трансляцией (от лат. translatio — перевод) называют осуществляемый рибосомой синтез белка из аминокислот на матрице информационной (или матричной) РНК (иРНК или мРНК).
Регуляция трансляции
Регуляция биосинтеза белка - принципиальный атрибут любой живой клетки. Регуляция необходима для поддержания баланса разнообразных белков в клетке или организме, для изменения этого баланса в меняющихся условиях окружающей или внутриорганизменной среды, для обеспечения смены белков в процессах клеточной дифференцировки и развития организма, для адекватного ответа на специфические внешние сигналы или неблагоприятные воздействия.
Синтез белков в клетке регулируется на трех уровнях:
1)путем изменения активности генов, то есть через тотальную или избирательную модуляцию продукции мРНК на матрице ДНК (уровень транскрипции); 2)путем изменения активности мРНК в ее трансляции рибосомами (уровень трансляции); 3)путем деградации мРНК посредством ее тотального или избирательного расщепления рибонуклеазами.
Живые клетки используют несколько различных способов или путей такой регуляции, но практически во всех случаях она осуществляется через регуляцию инициации трансляции. Это означает, что регуляторные механизмы трансляции направлены на то, чтобы разрешить или не разрешить инициацию трансляции данной мРНК, и если разрешить, то с какой эффективностью (скоростью инициации).
Существуют три основных способа, как регулировать трансляцию:
- Позитивная регуляция на основе сродства мРНК к инициирующей рибосоме и факторам инициации (дискриминация мРНК).
- Негативная регуляция с помощью белков-репрессоров, которые, связываясь с мРНК, блокируют инициацию (трансляционная репрессия). Этими двумя способами регулируются индивидуальные мРНК, то есть трансляция каждой мРНК может специфически контролироваться независимо от других мРНК клетки.
- Тотальная регуляция трансляции всей совокупности мРНК клетки посредством модификации факторов инициации.
При наличии общих черт регуляции на уровне трансляции у прокариотических (бактерии) и эукариотических (животные, растения, грибы и простейшие) организмов эти два надцарства живых существ обладают также только им свойственными путями или способами регуляции, обусловленными спецификой их мРНК и их аппарата инициации трансляции. Так, тотальная регуляция за счет модификации факторов инициации характерна, по-видимому, только для эукариот.
фо́лдингом белка (укладкой белка, от англ. folding) называют процесс спонтанного сворачивания полипептидной цепи в уникальную нативную пространственную структуру (так называемая третичная структура).
Каждая молекула белка начинает формироваться как полипептид, транслируемый из последовательности мРНК в виде линейной цепочки аминокислот. У полипептида нет устойчивой трёхмерной структуры (пример в левой части изображения). Однако все аминокислоты в цепочке имеют определённые химические свойства: гидрофобность, гидрофильность, электрический заряд. При взаимодействии аминокислот друг с другом и клеточным окружением получается хорошо определённая трёхмерная структура — конформация. В результате на внешней поверхности белковой глобулы формируются полости активных центров, а также места контактов субъединиц мультимерных белков друг с другом и с биологическими мембранами.
В фолдинге участвуют белки-шапероны. И хотя большинство только что синтезированных белков могут сворачиваться и при отсутствии шаперонов, некоторому меньшинству обязательно требуется их присутствие.
Шаперо́ны (англ. chaperones) — класс белков, главная функция которых состоит в восстановлении правильной третичной структуры повреждённых белков, а также образование и диссоциация белковых комплексов.
Организация генетического материала вирусов.
У известных вирусов геном представлен одним из множества типов (однонитчатой, двунитчатой, линейной, циркулярной, сегментарной) ДНК или РНК. Среди вирусов человека и животных преобладают РНК-содержащис: из 17 семейств лишь 6 представлены ДНК-содержащими. Полагают, что РНК-содержащие вирусы представляют пример самостоятельного направления эволюции (Жданов, 1982; Цилинский, 1988).
Другой формой однонитчатой РНК представлен геном ретро-вирусов. Наиболее подробно изучен геном подсемейства онковирусов. В отличие от всех известных вирусов онковирусы - диплоиды, т. е. содержат две идентичные 35 S субъединицы РНК, соединенные водородными связями в области 5-концов и образующие 60- 70 S-структуру. В каждом вирионе содержится около 2-10 11 мкг РНК с молекулярной массой 3 MDa (около 10000 н.).
Дата добавления: 2018-04-04 ; просмотров: 243 ;
Геном вирусов, заключенный внутри вирионов, может быть представлен одноцепочечными или двухцепочечными ДНК или РНК.
Гены вирусов могут быть заключены в одной хромосоме или разделены на несколько блоков (хромосом), которые все вместе и составляют геном таких вирусов.
Геном РНК-содержащих вирусов представлен только линейными молекулами РНК. Все известные ДНК- содержащие вирусы позвоночных имеют геном, заключенный в одной хромосоме, линейной или кольцевой, одно- или двухцепочечной.
У некоторых вирусов, например, у вируса гепатита В, геном представлен кольцевой ковалентно замкнутой молекулой двухцепочечной ДНК, в обеих цепях которой в разных местах обнаружены одноцепочечные участки. У нескольких родов, например, адено-ассоциированных вирусов, комплементарные цепи ДНК находятся в различных вирусных частицах.
Геном вирусов включает:
- · Структурные гены. Занимают примерно 95 % вирусной хромосомы. Белки вирусов можно разделить на несколько групп: структурные, ферменты, регуляторы.
- · Регуляторные последовательности, которые не кодируют белки: промоторы, операторы и терминаторы.
- · Прочие некодирующие участки (сайты), в том числе:
участок attP, обеспечивающий интеграцию вирусной хромосомы в хромосому клетки-хозяина;
участки cos - липкие концевые участки линейных вирусных хромосом, обеспечивающие замыкание линейной хромосомы в кольцевую форму.
· Гены, кодирующие рРНК и тРНК, в геноме вирусов обычно отсутствуют (за исключением, генома о фага Т 4, который имеет гены, кодирующие тРНК).
Геном вирусов отличается высокой плотностью упаковки информации. Например, у фага ц Х 174 в пределах одного гена может располагаться еще один ген (на рисунке кольцевая ДНК представлена в линейной форме). В частности, ген В находится в пределах гена А, а ген Е - в пределах гена D:
У мелкого РНК-содержащего фага f2 ген регуляторного белка, блокирующего лизис (созревание вирионов и разрушение клетки), перекрывается с двумя другими генами, удаленными друг от друга:
Экспрессия (транскрипция и трансляция) вирусных генов происходит в том случае, если геном вируса представлен двунитевой ДНК (у РНК-содержащих вирусов необходим перевод информации в ДНК). Из-за полярности ДНК транскрипция идет только в одном направлении, то есть ген имеет начало и конец. Тогда "правые" гены не будут транскрибироваться РНК-полимеразой, движущейся влево, и наоборот. При этом один и тот же ген может транскрибироваться с разных промоторов; в этом случае экспрессия генов контролируется разными механизмами.
Особенности вирусов эукариот
У вирусов эукариот обнаружены следующие особенности:
- 1. Перекрывание генов (обезьяний вирус SV 40, вирус гриппа).
- 2. Интрон-экзонная структура генов.
- 3. Модификация белков после синтеза полипротеинов: весь геном транскрибируется в виде одной молекулы иРНК, которая служит матрицей для синтеза полипротеина - одного гигантского инертного белка, и лишь затем происходит расщепление полипротеина на белки, выполняющие определенные функции.
К ДНК-содержащим вирусам относятся многие вирусы бактерий - бактериофаги (или просто фаги). Некоторые мелкие фаги (например, фаг М 13) при репродукции не разрушают клетку. Репродукция крупных фагов (например, фага Т-4) приводит к гибели клетки. Фаг Т-4 - это один из наиболее сложно организованных вирусов. Белковый капсид включает не менее 130 белков, образующих головку, воротничок, сократимый хвост, базальную пластинку и хвостовые нити. Такое строение капсида позволяет впрыскивать ДНК в бактериальную клетку через толстую оболочку, поэтому подобные вирусы образно называют "живыми шприцами". Т-фаги могут существовать в виде профага длительное время. К ДНК-содержащим вирусам относятся возбудители многих заболеваний человека и животных: вирусы оспы, герпеса, гепатита В, аденовирусы млекопитающих и человека (вызывают желудочно-кишечные заболевания, ОРВИ, конъюнктивиты), вирусы бородавок человека. К ДНК-содержащим вирусам относятся и некоторые вирусы растений (вирус золотистой мозаики фасоли, вирус мозаики цветной капусты). Некоторые вирусы используются в генной инженерии для переноса генов от одних организмов к другим, например, обезьяний вирус SV 40.
Вирионы ДНК-содержащих вирусов содержат ДНК. Объемом ДНК определяется количество белков в вирионе: один полипептид кодируется отрезком ДНК длиной примерно 1 тысяча нуклеотидов (нуклеотидных пар). После проникновения в клетку вирусная ДНК становится матрицей для синтеза ДНК и РНК.
Примеры организации генома ДНК-содержащих вирусов
1. Кольцевая двухцепочечная ДНК длиной около 5 тпн.
ь Обезьяний вирус SV 40. Мелкий эукариотический вирус. Вирионы в виде икосаэдра. Капсид белковый. Используется в генной инженерии как вектор переноса генов. Кодирует 5 белков.
ь Вирусы бородавок человека.
2. Кольцевая одноцепочечная ДНК длиной около 5 тн; может быть как кодирующей, так и антикодирующей.
Мелкие бактериофаги типа М 13. Не разрушают клетку. Капсид включает 8 белков
Вирус золотистой мозаики фасоли.
3. Линейная двухцепочечная ДНК длиной 30-150 тпн.
Бактериофаги типа Т 4. Вирионы крупные. Белковый капсид из 130 белков включает: головку, хвостовой отдел и хвостовые нити. Эти вирусы могут существовать в виде профага длительное время.
Аденовирусы млекопитающих и человека. Вирионы средних размеров в виде икосаэдра. Капсиды белковые. Вызывают ОРВИ, конъюнктивиты, желудочно-кишечные заболевания, иногда обладают онкогенными свойствами.
Вирусы оспы, герпеса и им подобные. Вирионы крупные. Имеется липопротеиновая оболочка.
- 4. Линейная одноцепочечная ДНК длиной около 5 тн; ДНК может быть как кодирующей, так и антикодирующей. У человека известны как спутники аденовирусов.
- 5. Двухцепочечная ДНК, замкнутая в кольцо из перекрывающихся сегментов. Длина ДНК - 3-8 тн.
ь Вирус гепатита В. Вирион сферический, средних размеров. Имеется дополнительная оболочка из вирусных и клеточных белков. Кодирует 5 белков.
ь Вирус мозаики цветной капусты.
К РНК-содержащим вирусам относятся многие вирусы растений, возбудители заболеваний человека и животных: вирус полиомиелита, вирусы гриппа А, В и С, вирусы паротита (свинки), кори, чумы плотоядных животных (чумки), бешенства, вирус иммунодефицита человека (ВИЧ). В отдельную группу выделяются арбовирусы, которые переносятся членистоногими (клещами, москитами), например, вирусы клещевого энцефалита, желтой лихорадки. Многие РНК-содержащие вирусы вызывают ОРВИ (например, коронавирусы), желудочно-кишечные заболевания (реовирусы птиц, млекопитающих и человека). Некоторые РНК-содержащие вирусы используются в биотехнологии, например, вирусы полиэдроза насекомых.
Вирионы РНК-содержащих вирусов содержат РНК. После проникновения в клетку вирусная РНК становится матрицей для синтеза ДНК и РНК.
Примеры организации генома РНК-содержащих вирусов
1. Линейная одноцепочечная мРНК (плюс-цепь) длиной около 4 тн; в виде единой молекулы или в виде нескольких разных молекул. Плюс-цепь сразу же может использоваться для трансляции. Вегетативно-репродуктивная фаза этих вирусов протекает в цитоплазме. В плюс-цепи закодирована РНК-репликаза (РНК-зависимая РНК-полимераза). Представители:
ь Вирус табачной мозаики (ВТМ) - сегментированная РНК. Вирион нитевидный (18х 300 нм). ВТМ открыт Д.И. Ивановским в 1982 г.
ь Вирус полиомиелита - несегментированная РНК. Вирионы мелкие, в виде икосаэдра. Капсид белковый.
ь Вирус бешенства. Нитевидный вирион. Имеется дополнительная липопротеиновая оболочка.
ь Арбовирусы (переносятся членистоногими: клещами, москитами) - вирусы клещевого энцефалита, желтой лихорадки. Морфология и размеры вирионов разнообразны, например, вирус энцефалита содержит 9 белков. Имеется дополнительная липопротеиновая оболочка.
ь Мелкие бактериофаги (с несегментированной РНК).
2. Линейная одноцепочечная кРНК (минус-цепь, порядок нуклеотидов комплементарен по отношению к мРНК). Минус-цепь не может служить для трансляции и используется как матрица для синтеза плюс-цепи. Плюс-цепь служит для трансляции вирусных белков и используется как матрица для синтеза вирусной кРНК. Вегетативно-репродуктивная фаза этих вирусов также протекает в цитоплазме.
ь Вирусы гриппа А, В, С. Вирус гриппа А содержит минус-цепь РНК, состоящую из 8 фрагментов. Фрагменты РНК связаны с вирусными белками и образуют спиральный нуклеокапсид. Поверх нуклеокапсида располагается гликолипопротеиновый суперкапсид. В составе вириона 10 белков. В состав суперкапсида входит два белка, определяющих антигенные свойства вируса: гемагглютинин и нейраминидаза. Кроме того, в состав вириона входит уже готовая РНК-репликаза, обеспечивающая синтез плюс-цепи на матрице минус-цепи.
ь Вирусы паротита (свинки), кори, чумы плотоядных животных (чумки). Сферический вирион средних размеров. Имеется дополнительная липопротеиновая оболочка.
- 3. Линейная двухцепочечная РНК
- 1. Мелкие бактериофаги. Вирионы мелкие, сферические или в виде икосаэдра. Капсид белковый.
- 2. Вирусы полиэдроза насекомых. Вирионы мелкие, сферические или в виде икосаэдра. Капсид белковый. Используются в биотехнологии (для синтеза интерферона).
ь Реовирусы птиц, млекопитающих и человека. Вирионы мелкие, сферические или в виде икосаэдра. Капсид белковый. Вызывают ОРВИ, желудочно-кишечные заболевания. РНК фрагментированная (10. 11 фрагментов), кодирует 11 белков.
4. Две линейные одноцепочечные одинаковые молекулы мРНК длиной около 10 тн
Ретровирусы. Способны интегрироваться в ДНК. В состав вирионов входит фермент обратная транскриптаза (ревертаза). Имеется дополнительная липопротеиновая оболочка. Многие ретровирусы вызывают онкологические заболевания: лейкозы, саркомы, опухоли молочных желез. К ретровирусам относится и вирус иммунодефицита человека, вызывающий СПИД.
ь Вирус иммунодефицита человека (ВИЧ). Содержит одну плюс-цепь РНК, кодирует 13 белков. Сферический вирион. Имеется дополнительная липопротеиновая оболочка, включающая фрагменты мембран человека. Избирательно поражает Т-лимфоциты.
Читайте также: