Что такое суставные рецепторы
Необходимым условием нормальной мышечной деятельности является получение информации о положении тела в пространстве и о степени сокращения каждой из мышц. Эта информация поступает в центральную нервную систему от рецепторов вестибулярного аппарата, глаз, кожи, а также от проприорецепторов (мышечно-суставных рецепторов). К проприорецепторам относятся:
- мышечные веретена, находящиеся среди мышечных волокон,
- тельца Гольджи, расположенные в сухожилиях,
- пачиниевы тельца, находящиеся в фасциях, покрывающих мышцы, в сухожилиях, связках и периосте.
Все эти проприорецепторы относятся к группе механорецепторов. Мышечные веретена и тельца Гольджи возбуждаются при растяжении, а пачиниевы тельца — при давлении.
О важности афферентной иннервации мышц свидетельствует и тот факт, что 30-50% волокон в любом нерве, подходящем к мышце, являются афферентными, несущими импульсацию от проприорецепторов. К уже отмечалось, при выключении афферентной иннервации мышц, например при перерезке задних корешков спинного мозга, координированная мышечная деятельность нарушается, несмотря на сохранение двигательной иннервации мышц.
Мышечные веретена представляют собой высокодифференцированные рецепторные образования, снабженные афферентными и эфферентными нервными волокнами. Каждое веретено состоит из нескольких тонких так называемых интрафузальных поперечно-полосатых мышечных волокон.
Oдиночное волокно состоит из центральной части — ядерной сумки и двух способных к сокращению участков. В ядерной сумке pacположены рецепторы, представляющие сообой спиралевидные окончания толстых афферентных покрытых миелиновой оболочкой нервных волокон. Сокращающиеся участки интрафузального волокна иннервированы тонкими моторными, так называемыми гамма-эфферентными, волокнами, образующими мелкие концевые пластинки.
Один конец интрафузального волокна прикрепляется к обычному мышечному волокну, а другой — к сухожилию. Таким образом, интрафузальные волокна расположены параллельно массе мышечных волокон, среди которых они находятся. Если мышца растянута или расслаблена, то мышечные веретена тоже растянуты и в рецепторах ядерной сумки возникают импульсы, идущие в центральную нервную систему. Если же мышца сокращена, то натяжение мышечных веретен ослабевает и импульсация прекращается.
Второй вид проприорецепторов — тельца Гольджи — находится в сухожилиях. При мышечном сокращении тельца Гольджи растягиваются и в них возникают нервные импульсы, поступающие к нервным центрам. Сухожильные рецепторы менее возбудимы, чем мышечные веретена.
Таким образом, в двигательном аппарате имеются рецепторы — мышечные веретена,— возбуждающиеся при удлинении (расслаблении и растяжении), и рецепторы — тельца Гольджи,— возбуждающиеся при сокращении мышечных волокон.
Импульсы, поступающие в центральную нервную систему от мышечных веретен, облегчают возникновение рефлекторной реакции данной мышцы и тормозят сокращение мышцы-антагониста. Импульсы, приходящие от сухожильных рецепторов — телец Гольджи, вызывают противоположные рефлекторные реакции.
Импульсация из мышечных веретен, как показал Р. Гранит, может изменяться с помощью специального регуляторного механизма. Такой механизм образован сократительными элементами, расположенными по обе стороны от ядерной сумки интрафузального волокна. Их сокращение вызывает растяжение ядерной сумки и раздражение рецепторов веретена. Таким образом, эти рецепторы могут посылать в центральную нервную систему интенсивную импульсацию даже при небольшом сокращении или расслаблении поперечнополосатой мышцы.
Степень сокращения сократительных элементов веретена регулируется гамма-эфферентными нервными волокнами, которые являются отростками, гамма-мотонейронов спинного мозга. Импульсы, приходящие по гамма-эфферентным волокнам, вызывают сокращения интрафузальных мышечных волокон, что приводит к усилению потока афферентных импульсов от растягиваемых рецепторов ядерной сумки. Активность гамма-мотонейронов регулируется ретикулярной формацией среднего мозга.
Сократительные элементы мышечных веретен всегда находятся в состоянии некоторого тонуса, так как по гамма-эфферентам непрерывно поступают к ним импульсы из центральной нервной системы. Это влечет собой афферентную импульсацию от мышечных веретен, которая в свою ередь тонизирует мотонейроны спинного мозга, что является одной из причин рефлекторного тонуса скелетной мускулатуры. Отличительная особенность проприорецепторов — их малая способность к адаптации, благодаря чему центральная нервная система получает непрерывные сигналы о состоянии скелетной мускулатуры и может осуществлять непрерывную регуляцию двигательных актов.
Кинестетические сигналы, т. е. сигналы о движении отдельной части тела, играют чрезвычайно важную роль в развитии восприятий организма. Они являются главным контролем других органов чувств, например, зрения. Так, оценка зрением расстояния до какого-нибудь предмета вырабатывается при помощи мышечного чувства. Возбуждения, связанные с работой мышц, возникающие при хватании предмета руками или приближении к нему, сочетаются со зрительными ощущениями и служат важнейшим критерием для выработки суждения о том, насколько отдален предмет.
Проприоцепция — это группа сигналов, посылаемых в центральную нервную систему специальными терминалами (проприоцепторами), расположенными в суставных капсулах, связках, сухожилиях и мышцах.
Проприоцепторы, среди которых выделяют мышечные рецептор ных образований" href="http://www.braintools.ru/article/9580"> рецептор ы, или мышечные веретена ( рецептор ы растяжения), сухожильные рецептор ы, или органы Гольджи ( рецептор ы мышечной силы), а также суставные рецепторы относятся к механо рецептор ам, посылающим в ЦНС информацию о положении, деформации и смещениях различных частей тела.
Функционирование этих рецептор ов обеспечивает координацию всех подвижных органов и тканей животного и человека в состоянии покоя и во время любых двигательных актов. При экспериментальном выключении проприоцепторов животные теряют способность поддерживать естественные позы, двигаться и целесообразно реагировать на внешние воздействия.
Если человек закроет глаза и попытается написать текст, то буквы будут написаны достаточно четко. Этим простым способом легко убедиться в умении человека пользоваться информацией, идущей от мышц и суставов.
Проприоцепторы составляют периферическую часть проприоцептивной сенсорной системы , или двигательного анализатора . Вместе с тем, несмотря на то, что миллионы людей ежедневно пользуются услугами этого анализатора, мы до сегодняшнего дня знаем сравнительно мало о его деятельности. Это особенно касается работы коркового отдела двигательного анализатора. Внутренние проприоцепторы находятся в мышцах, сухожилиях, сухожильных влагалищах, межкостных мембранах, фасциях, тканях суставов, надкостнице и т.д. Среди них имеются неспециализированные рецептор ы, встречающиеся и в других частях тела (свободные нервные окончания, инкапсулированные рецептор ы типа телец Руффини и Пачини), и специализированные — мышечные веретена и сухожильные органы (или рецептор ы) Гольджи.
Двигательный, или кинестетический, анализатор (мышечная сенсорная система ) обеспечивает формирование так называемого мышечного чувства при изменении напряжения мышц, суставных сумок, связок и сухожилий. Проблема мышечно-суставных ощущений имеет исключительное значение для физиологии и психологии. Специфические особенности человека появились благодаря более совершенной организации мышечной сенсорной системы по сравнению с животными.
И.М. Сеченов считал, что мышечное чувство является ближайшим регулятором движений и одним из орудий ориентации человека в пространстве и времени. Ощущения положения и перемещения тела в пространстве, ощущения во время трудовой деятельности и членораздельная речь лежат в основе формирования сознания человека и его представлений об окружающем мире.
Мышечное чувство обладает тремя качествами. Это, во-первых, ощущение положения конечностей, когда человек может определить положение своих конечностей и их частей относительно друг друга. Во-вторых, ощущение движения, когда, изменяя угол сгибания в суставе, человек осознаёт скорость и направление движения. Третьим качеством является ощущение усилия, когда человек может оценить мышечную силу, нужную для движения или удерживания суставов в определённом положении при подъёме или перемещении груза.
Наряду с кожной, зрительной и вестибулярной сенсорными системами двигательный анализатор оценивает положение тела в пространстве, позу, участвует в координации мышечной деятельности.
Двигательная сенсорная система служит для анализа состояния двигательного аппарата — его движения и положения. Информация о степени сокращения скелетных мышц, натяжении сухожилий, изменении суставных углов необходима для регуляции двигательных актов и поз.
Общий план организации. Двигательная сенсорная система состоит из следующих 3-х отделов:
- периферический отдел, представленный проприо рецептор ами, расположенными в мышцах, сухожилиях и суставных сумках;
- проводниковый и отдел, который начинается биполярными клетками (первыми нейрон ами), тела которых расположены вне ЦНС — в спинномозговых узлах. Один их отросток связан с рецептор ами, другой входит в спинной мозги передает проприоцептивные импульсы ко вторым нейрон ам в продолговатый мозг (часть путей от проприо рецептор ов направляется в кору мозжечка ), а далее к третьим нейрон ам — релейным ядрам таламуса (в промежуточный мозг);
- корковый отдел находится в передней центральной извилине коры больших полушарий.
Функции проприо рецептор ов
К проприо рецептор ам относятся мышечные веретена, сухожильные органы (или органы Гольджи) и суставные рецептор ы ( рецептор ы суставной капсулы и суставных связок). Все эти рецептор ы представляют собой механо рецептор ы, специфическим раздражителем которых является их растяжение.
Мышечные веретена человека, представляют собой продолговатые образования длиной несколько миллиметров, шириной десятые доли миллиметра, которые расположены в толще мышцы. В разных скелетных мышцах число веретен на1 г ткани варьирует от нескольких единиц до сотни.
Таким образом, мышечные веретена как датчики состояния силы мышцы и скорости ее растяжения реагируют на два воздействия: периферическое — изменение длины мышцы, и центральное — изменение уровня активации гамма-мото нейрон ов. Поэтому реакции веретен в условиях естественной деятельности мышц довольно сложны. При растяжении пассивной мышцы наблюдается активация рецептор ов веретен; она вызывает миотатичес-кий рефлекс , или теор ии рефлекторной деятельности" href="http://www.braintools.ru/article/8998">рефлекс на растяжение. При активном сокращении мышцы уменьшение ее длины оказывает на рецептор ы веретена дезактивирующее действие, а возбуждение гамма-мото нейрон ов, сопутствующее возбуждению альфа-мото нейрон ов, приводит к реактивации рецептор ов. Вследствие этого импульсация от рецептор ов веретен во время движения зависит от длины мышцы, скорости ее укорочения и силы сокращения.
Сухожильные органы ( рецептор ы) Гольджи человека располагаются в зоне соединения мышечных волокон с сухожилием, последовательно по отношению к мышечным волокнам.
Сухожильные органы представляют собой структуру вытянутой веретенообразной или цилиндрической формы, длина которой у человека может достигать1 мм. Этот первичночувствующий рецептор . В условиях покоя, т.е. когда мышца не сокращена, от сухожильного органа идет фоновая импульсация. В условиях мышечного сокращения частота импульсации возрастает прямо пропорционально величине мышечного сокращения, что позволяет рассматривать сухожильный орган как источник информации о силе, развиваемой мышцей. В тоже время сухожильный орган слабо реагирует на растяжение мышцы.
В результате последовательного крепления сухожильных органов к мышечным волокнам (а в ряде случаев — к мышечным веретенам), растяжение сухожильных механо рецептор ов происходит при напряжении мышц. Таким образом, в отличие от мышечных веретен, сухожильные рецептор ы информируют нервные центры о степени напряжения мыши, и скорости его развития.
Эфферентная иннервация скелетной мышцы: 1 — сухожилие мышцы; 2 — сухожильные рецептор ы Гольджи; 3 — свободные окончания; 4 — тельца Фатера-Пачини; 5 — афферентные волокна; 6 — эфферентные волокна; 7 — мышечное веретено; 8 — окончания афферентных волокон
Суставные рецептор ы реагируют на положение сустава и на изменения суставного угла, участвуя, таким образом, в системе обратных связей от двигательного аппарата и в управлении им. Суставные рецептор ы информируют о положении отдельных частей тела в пространстве и относительно друг друга. Эти рецептор ы представляют собой свободные нервные окончания или окончания, заключенные в специальную капсулу. Одни суставные рецептор ы посылают информацию о величине суставного угла, т. е. о положении сустава. Их импульсация продолжается в течение всего периода сохранения данного угла. Она тем большей частоты, чем больше сдвиг угла. Другие суставные рецептор ы возбуждаются только в момент движения в суставе, т. е. посылают информацию о скорости движения. Частота их импульсации возрастаете увеличением скорости изменения суставного угла.
Проводниковый и корковый отделы проприоцеп-тивного анализатора млекопитающих и человека. Информация от мышечных, сухожильных и суставных рецептор ов поступает через аксон ы первых афферентных нейрон ов, находящихся в спинномозговых ганглиях, в спинной мозг , где частично переключается на альфа-мото нейрон ы или на вставочные нейрон ы (например, на клетки Реншоу), а частично направляется по восходящим путям в высшие отделы головного мозга. В частности, по путям Флексига и Говерса проприоцептивная импульсация доставляется к мозжечку, а по пучкам Голля и Бурдаха, проходящим в дорсальных канатиках спинного мозга , она доходит до нейрон ов одноименных ядер, расположенных в продолговатом мозге.
Аксоны таламических нейрон ов ( нейрон ов третьего порядка) оканчиваются в коре больших полушарий, главным образом, в соматосенсорной коре (постцентральная извилина) и в области сильвие-вой борозды (соответственно, участки S-1 и S-2), а также частично в двигательной (префронтальной) области коры. Эта информация используется двигательными системами мозга достаточно широко, в том числе для принятия решения о замысле движения, а также для его реализации. Кроме того, у человека на основе про-приоцептивной информации формируются представления о состоянии мышц и суставов, а также, в целом, о положении тела в пространстве.
Сигналы, идущие от рецептор ов мышечных веретен, сухожильных органов, суставных сумок и тактильных рецептор ов кожи. Механо рецептор ная и температурная чувствительность" href="http://www.braintools.ru/article/9885"> рецептор ов кожи, называют кинестетическими, т. е. информирующими о движении тела. Их участие в произвольной регуляции движений различно. Сигналы от суставных рецептор ов вызывают заметную реакцию в коре больших полушарий и хорошо осознаются. Благодаря им человек лучше воспринимает различия при движениях в суставах, чем различия в степени напряжения мышц при статических положениях или поддержании веса. Сигналы же от других проприо рецептор ов, поступающие преимущественно в мозжечок, обеспечивают бессознательную регуляцию, подсознательный контроль движений и поз.
Таким, образом, проприоцептивные ощущения дают человеку возможность воспринимать изменения положения отдельных частей тела в покое и во время совершаемых движений. Информация, поступающая от проприоцепторов, позволяет ему постоянно контролировать позу и точность произвольных движений, дозировать силу мышечных сокращений при противодействии внешнему сопротивлению, например при подъеме или перемещении груза.
Проприоцептивное восприятие положения тела и движений происходит в результате объединения в соматосенсорной коре информации от всех разновидностей проприоцепторов.
Лекция 2
Функционирование рецепторного аппарата мышц
При изучении анатомии и физиологии (А.С. Солодков, Е.Б. Сологуб, 2001) вы изучали двигательную сенсорную систему. Одним из отделов этой системы являются проприорецепторы, расположенные в мышцах, сухожилиях и суставных сумках. В мышцах расположены мышечные веретена, в сухожилиях – сухожильные органы Гольджи. В суставных сумках расположены рецепторы суставов.
Еще в XIX веке В. Кюне обнаружил в скелетных мышцах структуры, напоминающие веретено. Затем, в начале XX века Нобелевский лауреат Чарльз Скотт Шеррингтон показал, что эти структуры служат чувствительными рецепторами. Мышечные веретена рассеяны по всем скелетным мышцам. Концы их обычно прикрепляются к мышечным волокнам параллельно. Каждое веретено покрыто капсулой, которая расширятся в центре и образует ядерную сумку. Внутри веретена содержатся интрафузальные мышечные волокна. Эти волокна в 2-3 раза тоньше обычных (экстрафузальных) волокон скелетных мышц.
Интрафузальные волокна подразделяются на два типа:
- Длинные и толстые (диаметр 20-25 мкм)[1], которые информируют ЦНС о динамическом компоненте движения – скорости изменения длины мышцы. Таких волокон в мышечном веретене не более двух.
- Короткие и тонкие (диаметр 10–12 мкм), которые информируют ЦНС о статическом компоненте движения – текущей длине мышцы. Таких волокон в мышечном веретене от 2 до 12.
Нервно-сухожильные веретена (рецепторы Гольджи) открыл в 1903 году Камилло Гольджи. Впоследствии за эти исследования ему была присуждена Нобелевская премия. Рецепторы Гольджи располагаются в месте перехода мышечных волокон в сухожилия. Их длина составляет 0,5-1,0 мм, а диаметр – 0,1-0,2 мм. Отдельный нервный аксон несет афферентные импульсы в спинной мозг и называется аксоном Ib. Он начинается в виде веточек, проходящих между коллагеновыми волокнами сухожилия. Когда мышечные волокна сокращаются, коллагеновые волокна сухожилия натягиваются и сжимают нервные веточки, которые начинают импульсировать (рис.2.1). Таким образом, в результате последовательного крепления сухожильных органов к мышечным волокнам они возбуждаются при укорочении возбужденной мышцы. Сухожильные рецепторы возбуждаются в 1,5 – 8 раз более эффективно при мышечном сокращении, нежели при пассивном растяжении.
Рис. 2.1. Строение сухожильного органа Гольджи (А.Дж. Мак-Комас, 2001)
Суставные рецепторы подразделяются на несколько типов в зависимости от их реакции на амплитуду, скорость и направление движения в суставе.
Тельца Руффини находятся в капсуле сустава и воспринимают направление и скорость изменения межзвенного угла. Частота их импульсации возрастает с увеличением скорости изменения суставного угла.
Тельца Паччини посылают в ЦНС информацию о положении отдельных частей тела в пространстве и относительно друг друга. Эти рецепторы посылают в ЦНС информацию о значениях межзвенных углов, то есть о положении сустава. Их импульсация продолжается в течение всего периода сохранения межзвенного угла, и она тем больше, чем больше изменения угла.
Афферентация уровня А основана на импульсации мышечных веретен (длина и скорость сокращения мышцы) и рецепторов Гольджи (уровень возбуждения мышцы при ее укорочении). Эта информация очень слабо осознается ЦНС, то есть, по гипотезе Н.А.Бернштейна, этот уровень почти никогда не бывает ведущим.
Афферентация уровня В опирается на информацию, поступающую от суставных рецепторов. Это уровень выступает как ведущий в ряде физических упражнений, таких как наклоны тела вперед и назад, а также циклические движения. Сигналы от суставных рецепторов хорошо осознаются.
2. Самсонова А.В. Биомеханика мышц: учебно-методическое пособие /А.В.Самсонова, Е.Н. Комиссарова / Под ред А.В.Самсоновой .- СПб., 2008.- 217 с.
3. Самсонова А.В. Моторная и сенсорная функции мышц в биомеханике локомоций: монография /А.В.Самсонова; СПбГУФК им. П.Ф.Лесгафта, 2007.- 152 с.
(проприорецепция)
В мышцах человека содержатся три типа специализированных рецепторов: первичные окончания веретен, вторичные окончания веретен и сухожильные рецепторы Гольджи. Эти рецепторы реагируют на механические раздражения и участвуют в координации движении, являясь источником информации о состоянии двигательного аппарата (см. также гл. 5).
Суставные рецепторы изучены меньше, чем мышечные. Известно, что они реагируют на положение сустава и на изменения суставного угла, участвуя таким образом в системе обратных связей от двигательного аппарата.
Передача и переработка соматосенсорной
Информации
Чувствительность кожи и ощущение движения связаны с проведением в мозг сигналов от рецепторов по двум основным путям (трактам): лемнисковому и спиноталамическому, значительно различающимся по своим свойствам.
Лемнисковый путь передает в мозг сигналы о прикосновении к коже, давлении на нее и движениях в суставах. Отличительная особенность этого пути — быстрая передача в мозг наиболее точной информации, дифференцированной по силе и месту воздействия.
Рис. 4.10. Корковое представительство кожной чувствительности. Расположение в соматосенсорной зоне коры больших полушарий мозга человека проекций различных частей тела: 1 — половые органы; 2 — пальцы ноги; 3 — ступня; 4 — голень; 5 — бедро; 6 — туловище; 7 — шея; 8 — голова; 9 — плечо; 10-11 — локоть; 12 — предплечье; 13 — запястье; 14 — кисть; 15-19 — пальцы руки; 20 — глаза; 21 — нос; 22 — лицо; 23 — верхняя губа; 24,26 — зубы; 25 — нижняя губа; 27 — язык; 28 — глотка; 29 — внутренние органы. Размеры изображений частей тела соответствуют размерам их сенсорного представительства
Спиноталамический путь значительно отличается от лемнискового сравнительно медленной передачей афферентных сигналов, нечетко дифференцированной информацией о свойствах раздражителя и не очень четкой ее топографической локализацией; он служит для передачи температурной, всей болевой и в значительной мере тактильной чувствительности.
Болевая чувствительность практически не представлена на корковом уровне (раздражение коры не вызывает боли), поэтому считают, что высшим центром болевой чувствительности является таламус, где 60 % нейронов в соответствующих ядрах четко реагирует на болевое раздражение. Таким образом, спиноталамичес-кая система играет важную роль в организации генерализованных ответов на действие болевых, температурных и тактильных раздражителей.
Обонятельная система
Рецепторы обонятельной системы расположены в области верхних носовых ходов. Обонятельный эпителий имеет толщину 100-150 мкм и содержит около 10 млн рецепторных клеток диаметром 5-10 мкм, расположенных между опорными клетками (рис. 4.11). На поверхности каждой обонятельной клетки имеется сферическое утолщение — обонятельная булава, из которой выступает 6-12 волосков длиной до 10 мкм. Обонятельные волоски погружены в жидкую среду, вырабатываемую боу-меновыми железами. Наличие подобных волосков в десятки раз увеличивает площадь контакта рецептора с молекулами пахучих веществ. От нижней части рецепторной клетки отходит аксон. Аксоны всех рецепторов образуют обонятельный нерв, который проходит через основание черепа и вступает в обонятельную луковицу.
Рис. 4.11 Схема строения обонятельного эпителия по данным
ОБ - обонятельная булава; ОК — опорная клетка; ДО - центральные отростки обонятельных клеток; БК - базальная клетка; БМ - базальная мембрана; ВЛ - обонятельные волоски; МБР - микроворсинки обонятельных и МВО — микроворсинки опорных клеток
Молекулы пахучих веществ попадают в обонятельную слизь с постоянным током воздуха. Здесь они взаимодействуют с находящимся в волосках рецептора рецепторным белком. В результате этого взаимодействия в мембране рецептора открываются натриевые каналы и генерируется рецепторный потенциал. Это приводит к импульсному разряду в аксоне рецептора — волокне обонятельного нерва.
Каждая рецепторная клетка способна ответить возбуждением на характерный для нее, хотя и широкий, спектр пахучих веществ. Спектры чувствительности разных клеток сильно перекрываются. Вследствие этого более чем 50 % пахучих веществ оказываются общими для любых двух обонятельных клеток.
Электроольфактограммой называют суммарный электрический потенциал, регистрируемый от поверхности обонятельного эпителия. Это монофазная негативная волна длительностью в несколько секунд, возникающая даже при кратковременном воздействии пахучего вещества.
Чувствительность обонятельной системы человека чрезвычайно велика: один обонятельный рецептор может быть возбужден одной молекулой пахучего вещества, а возбуждение небольшого количества рецепторов приводит к возникновению ощущения. В то же время изменение интенсивности запаха (дифференциальный порог) оценивается людьми довольно грубо: наименьшее воспринимаемое различие в силе запаха составляет 30-60 % от его исходной концентрации. Адаптация в обонятельной системе происходит сравнительно медленно (десятки секунд или минуты) и зависит от скорости потока воздуха над обонятельным эпителием и от концентрации пахучего вещества.
Вкусовая система
В процессе эволюции вкус формировался как механизм выбора или отвергания пищи. Выбор предпочитаемой пищи отчасти основан на врожденных механизмах, но в значительной мере зависит от связей, выработанных в онтогенезе. Вкус, так же как и обоняние, основан на хеморецепции и дает информацию о характере и концентрации веществ, поступающих в рот. В результате запускаются реакции, изменяющие работу органов пищеварения или ведущие к удалению вредных веществ, попавших в рот.
Вкусовые рецепторы
Вкусовые рецепторы сконцентрированы во вкусовых почках, расположенных на языке, задней стенке глотки, мягком небе, миндалине и надгортаннике. Больше всего их на кончике языка. Каждая из примерно 10 000 вкусовых почек человека состоит из нескольких рецепторных и опорных клеток. Вкусовая почка соединена с полостью рта через вкусовую пору. Вкусовая рецепторная клетка имеет длину 10-20 мкм и ширину 3-4 мкм и снабжена на конце, обращенном в просвет поры, 30-40 тончайшими микроворсинками. Считают, что они играют важную роль в рецепции химических веществ, адсорбированных в канале почки. Многие этапы преобразования химической энергии вкусовых веществ в энергию нервного возбуждения вкусовых рецепторов еще неизвестны.
Электрические потенциалы вкусовой системы. Суммарный потенциал рецепторных клеток возникает при раздражении языка сахаром, солью и кислотой. Он развивается медленно: максимум потенциала приходится на 10-15-ю с после воздействия, хотя электрическая активность в волокнах вкусового нерва начинается раньше.
Афферентные сигналы, вызванные вкусовой стимуляцией, поступают в ядро одиночного пучка ствола мозга. От этого ядра аксоны вторых нейронов восходят в составе медиальной петли до таламуса, где расположены третьи нейроны, аксоны которых направляются в корковый центр вкуса.
Вкусовая адаптация. При длительном действии вкусового вещества развивается адаптация к нему, которая пропорциональна концентрации раствора. Адаптация к сладкому и соленому развивается быстрее, чем к горькому и кислому. Обнаружена и перекрестная адаптация, т. е. изменение чувствительности к одному веществу при действии другого. Последовательное применение нескольких вкусовых раздражителей дает эффекты вкусового контраста. Например, адаптация к горькому повышает чувствительность к кислому и соленому, а адаптация к сладкому обостряет восприятие всех других вкусовых ощущений. При смешении нескольких вкусовых веществ возникает новое вкусовое ощущение, отличающееся от вкуса составляющих смесь компонентов.
В мышцах человека содержатся три типа специализированных рецепторов: первичные окончания веретен, вторичные окончания веретен и сухожильные рецепторы Гольджи. Эти рецепторы реагируют на механические раздражения и участвуют в координации движений, являясь источником информации о состоянии двигательного аппарата.
Мышечные веретена представляют собой небольшие продолговатые образования, расположенные в толще мышцы (рис.). Внутри капсулы каждого веретена находится пучок мышечных волокон. Эти волокна называют интрафузальными, в отличие от всех остальных волокон мышцы, которые носят название зкстрафузальные. Веретена расположены параллельно экстра-фузальным волокнам, поэтому при растяжении мышцы нагрузка на веретена увеличивается, а при сокращении уменьшается.
Рис. Строение мышечного волокна и его иннервация.
1 — проксимальный конец прикрепленной к волокну скелетной мышцы; 2 — дистальный конец этого волокна, прикрепленного к фасции; 3 — ядерная сумка; 4 — афферентные волокна; 5 — эфферентные волокна; 6 — моторное волокно, идущее к скелетной мышце.
Веретена реагируют на два типа воздействии: изменение длины мышцы и изменение уровня активации системы эфферентных волокон. При растяжении пассивной мышцы наблюдается активация рецепторов (мышечных веретен).
Веретена можно рассматривать как непосредственный источник информации о длине мышцы, о ее изменениях, если только мышца не возбуждена. При активном состоянии мышцы необходимо учитывать влияние системы, которая поддерживает импульсацию веретен укорачивающейся мышцы, что дает возможность рецепторам реагировать на вызванные помехами неравномерности движения как увеличением, так и уменьшением частоты импульсов и участвовать таким образом в коррекции движений.
Разминая мышцу, массажист добивается усиления импульсации с мышечных веретен в соответствующие сегменты спинного мозга, тем самым повышая тонус того нервного центра, который управляет деятельностью этой мышцы.
Возникает вопрос: почему, несмотря на то, что применение любых массажных приемов вызывает усиление импульсации с рецепторов мышечных веретен или механорецепторов и — как следствие — повышение тонуса соответствующих отделов центральной нервной системы, кроме возбуждающего действия массажа, различают и его тормозные эффекты? Этот феномен можно объяснить одним из свойств нервных центров, куда поступает вся информация о внешних воздействиях на организм и о его внутреннем состоянии.
Безусловно, следует иметь в виду, что структура и характер ответных реакций организма на массаж каждый раз бывают различными в зависимости от соотношения процессов возбуждения и торможения в коре головного мозга, функционального состояния рецепторного поля, которое подвергается массажному воздействию, состояния тренированности, характера массажа и используемых приемов. Эффективность массажа зависит от знания массажистом функционального состояния массируемого.
К группе проприорецепторов, кроме мышечных веретен, относятся и суставные рецепторы. Они располагаются в суставных сумках и в связочном аппарате.
В суставных сумках находятся рецепторы, у которых частота разрядов изменяется в соответствии как с положением сустава в покое, так и со скоростью его движения. Гистологически они представляют собой рецепторы типа телец Руффини. Связки содержат рецепторы, сходные по форме с тельцами Гольджи, и немного телец, подобных тельцам Пачини. Кроме того, имеются свободные нервные окончания, функция которых пока неизвестна. Предполагают, что они участвуют в передаче болевых сигналов от суставов.
При выполнении массажистом пассивных движений в суставах у массируемого возбуждаются суставные рецепторы и инициируется цепь процессов, сходных по своим физиологическим механизмам с рассмотренными выше особенностями передачи нервных импульсов от мышечных веретен и механо-рецепторов.
В заключение, посвященное физиологическому воздействию массажа на механо- и проприорецепторы, следует отметить, что в них влияние массажа рассматривалось только с одной стороны — с точки зрения нервно-рефлекторной теории. Однако, как уже указывалось ранее, эффекты, получаемые при применении массажных приемов, могут быть объяснены только при учете комплексного воздействия массажа на организм. Для получения более полной картины физиологического воздействия массажа необходимо рассмотреть другие стороны его влияния.
Читайте также: