Концепция единства кровяной ткани. Кровь как мезенхимальная ткань
Добавил пользователь Владимир З. Обновлено: 21.12.2024
Кровь - ткань мезенхимного происхождения, образующая внутреннюю среду организма. Состоит из плазмы и взвешенных в ней форменных элементов. Плазма включает в себя 90% воды и 10% сухого остатка из которого 9% - органический остаток(альбумины, глобулины, фибиноген) и 1% неорганические соединения. Функции крови - дыхательная, транспортная, защитная, гомеостатическая.
36. Характеристика эритроцитов.
Эритроциты - высокодифференцированные безъядерные клетки, неподвижные, окрашенные, не способные к делению. В норме имеют дисковидную двояковогнутую форму. Функции - дыхательная, участвуют в транспорте аминокислот, антител, токсинов, адсорбируя поверхностью плазмолеммы. Гликокаликс содержит агглютиногены, ответственные за группу крови. Количество у мужчин 3,9 - 5,5 на 10 в 12 /л; у женщин - 3,7 - 4,9 на 10 в 12 /л крови.
Могут иметь и другие формы: планоциты, эхиноциты, стоматоциты, сфероциты. Изменения формы эритроцитов при заболеваниях - пойкилоцитоз. Анизоцитоз - изменение размеров.
37. Лейкоциты, их классификация, строение и функции.
Лейкоциты - белые кровяные клетки, подвижны, ядерные, проходят через стенки сосудов и соединительную ткань. Число 4-9 на10 в 9/л. По морфологическим признакам и биологической роли делятся на: зернистые (гранулоциты: нейтрофильные, эозинофильные, базофильные) и незернистые (агранулоциты: базофилы, лимфоцитф (Т- и В-)). Функции в основном защитные, регуляторные, клеточный и гуморальный иммунитет.
38. Кровяные пластинки (тромбоциты), их происхождение и функции.
Кровяные пластинки (тромбоциты) - безъядерные фрагменты цитоплазмы, отделившиеся от мегакариоцитов в кр.кост.мозге, размером 2-4 мкм. Количество 2,0 - 4,0 на 10 в 9/л. В кровотоке имеют вид двояковыпуклого диска. Функции: образование тромбов (красных и белых), содержат факторы свертывания крови (тромбопластин). Продолжительность жизни - 9 - 10 дней.
39. Гемограмма, её клиническое значение.
Гемограмма отражает содержание абсолютного и относительного количества форменных элементов крови, содержание эритроцитов, СОЭ, содержание гемоглобина, гематокрит, лейкоцитарная формула, в единице объема: литре (система СИ) или в 1 мл.
40. Теории кроветворения; роль гистологии в развитии гематологии.
Ой была предложена дуалистическая теория кроветворения: из отдельных 2- родоначальных клеток начинается и происходит лимфоцитопоэз и миелопоэз. В начале ХХ век предложили триалистическую теорию кроветворения - т.е. к 2-м родоначальным клеткам лимфоцитопоэза и миелопоэза был добавлен третья отдельная родоначальная клетка для моноцитопоэза. Еще в 1907 году Максимов утверждал, что все клетки крови развиваются из единой одной и той же родоначальной клетки; Максимов в ходе гемоцитопоэза клетки крови подразделял на 4 группы:
1 группа - клетки с неограничанной возможностью превращений, т.е. родоначальная клетка, способная развиваться и превратиться в любой форменный элемент крови.
2 группа - клетки с частично ограниченный способностью развиваться в ту или иную форму клеток крови.
3 группа - клетки со строго ограничанной возможностью развития.
4 группа - клетки крови не способные изменяться.
Сейчас принято разделять все клетки крови в процессе гемоцитопоэза на 6 классов:
1-й класс - полипотентные стволовые кроветворные клетки.
2й класс - полустволовые клетки - клетки предшественники миелопоэза, клетки предшественники лимфопоэза.
3-й класс - унипотентные предшественники, имеется отдельный предшественни.
4-й класс - бластные клетки, дифференцируются в строго определенном направлении, морфологически различимы.
5-й класс - созревающие клетки. В клетках появляются специфические для каждой клетки структуры, клетки постепенно теряют способность к делению.
Концепция единства кровяной ткани. Кровь как мезенхимальная ткань
Гематология: Эмбриология крови - кровяной ткани
С эмбриологической точки зрения кровяная ткань берет свое начало в первичном сосудистом ареале, мезенхимальных островках Вольфа и Пандера, от которых происходят также сердце и сосуды. В следующей главе (г) описаны фазы образования кроветворных органов, соответственно первичная мезобластичсская, затем гепатолиенальная и, на последних месяцах, окончательная костно-мозговая фаза кроветворения. Первичная мезенхимальиая клетка, содержащая информацию о кроветворной пролиферации и дифференциации восстанавливает ряды крови, как материнскими стимулами, так и стимулами, отправляемыми дифференцирующимися плодными тканями.
Привлекает внимание многосторонний потенциал первичной мезенхимальной клетки, которая порождает ретикулярную строму селезенки, узлов, печени и костей.
В послезародышевой жизни мезенхимальная клетка дифференцируется в клетки-штамм, различной направленности в костном мозге и лимфатических органах. Эта ориентация определяется в период зачаточного развития и является результатом продолжительной филогенетической эволюции. На протяжении этого развития костно-мозговая миелоидная ткань находится в зависимости от мезенхимальных, сосудисто-соединительнотканных и костных структур, составляющих частный микроклимат, способствующий дифференцированной пролиферации.
Филогенетически лимфоидная ткань развивается по плану иерархической структурной организации, причем исходно она появляется в центральных, а затем и в периферических лимфоидных органах (Берчану). Центральными органами являются вилочковая железа, у животных, и сумка Фабриция — у птиц, при том эти два органа способствуют «целенаправленности» иммунологически компетентных клеток, носящих характер лимфоцитов Т и Б. План их организации общий и создается вокруг эпителиальных образований эндотелиальной природы, берущих свое начало в пищеварительном тракте. Эти образования составляют эпителиальную ретикулярную строму, переплетающуюся с мезенхимальной стромой, как, впрочем, во всех лимфоидных органах.
Дифференциацию иммуных клеток, равно как и способность реагировать на антигенный стимул определяет их эмбриологическое происхождение, в тесной связи с эпителием, внутридермальной природы (Defendi, Good).
Функциональное различие, требуемое для дифференцированного развития по типу миелоидных или лимфоидных клеток определяется этими структурными взаимосвязями с разновидной стромой: эпителиальным эндотелием, для лимфоидной системы и костносуставными образованиями — для миелоидной. Еще не полностью выявлены взаимоотношения, налаживающиеся при создании этих двух систем. Точно установлена роль вилочковой железы в дифференциации лимфоидной системы, но не выведены размеры ее участия в функциях костного мозга. Однако из патологии известно, что опухоли вилочковой железы определяют медуллярную аплазию, но отсутствует доказательство взаимозависимости функций вилочковой железы и костного мозга при нормальном состоянии.
Строение костномозгового синуса.
Ebl—эритробласт; СЕ.— эндотелиальиая клетка; Gr.— гранулоцит; C.I.— интерстициальная клетка; М — макрофаг; Tr — тромбоцит; Mk — мегакариоцит; Еr— эритроцит.
На рисунке изображена функциональная взаимосвязь центральных лимфоидных органов — вилочковой железы и сумки Фабриция — и периферических лимфоидных органов — лимфатических узлов с различной топографической организацией лимфоцитов Т и Б. Лимфоциты Б, а по результатам некоторых исследований и лимфоцаты т находятся и в костном мозге, где образуют мелкие лимфоидные очаги, при этом гуморальный иммунитет находится под контролем лимфоцитов В. Поскольку морфологически клетки-штамм не отличаются от мелких лимфоцитов нам не известно являются ли костномозговые лимфоциты иммунологически компетентными клетками или клетками-штамм.
Проведенными после 1965 г. работами Yoffey и сотр. привели доказательства о том, что лимфоцит это клетка иммуного и в то же время кроветворного восстановления. Методом культур в полунепроницаемых камерах, Григориу и сотр. доказали, что периферические лимфоциты восстанавливают эритробласты. Однако последние данные, полученные в результате анализа колоний в пробирке (Metcalf u Moore) и прижизненно (Мс Colluch) выявили наличие двух различных клеток-штамм, имеющих характеристику лимфоцитов — одну из них в костном мозге, восстанавливающую миелоидные клетки, а другую в лимфоидных органах и периферической крови, восстанавливающую лимфоидные клетки. Эти аргументы выступают в пользу дуалистическоой теории о кроветворении.
Однако не ислючена мысль о способности различной дифференциации той же клетки, в зависимости от структурного, ганглиевого или медуллярного микроклимата, тем самым подтверждая неунистическую гипотезу (Loutit).
В 1979 г. Philips и сотр. впрыскивая клетки-штамм с хромосомными маркерами после облучения проследили возрождение этих клеток у других облученных животных. В связи с этим авторы заключили о наличии полипотентной клетки-штамм (КШп), из которой образуются клетка-штамм для лимфоидных линий Т и В (КШл) и клетка-штамм для миелоидной линии (КШм).
Дифференциацию по той или иной из этих линий определяют условия микроклимата и выделение специфических факторов для организации той или мной из этих линий (Boggs и сотр., Lord и сотр.). При послезародышевой жизни в остальных органах кроветворение не представляется возможным без специфического микроклимата равно как и там, где существуют угнетатели кроветворения. Однако его можно индуцировать при одновременном переносе питательной сети ретикулярной стромы (Humar и сотр.).
Все же функциональные связи и взаимообусловленность возможны в силу собственно структуры костного мозга, по сравнению со структурой ганглиев. В обеих структурах имеется ретикулярная строма с наличием ретикулярных и макрофаговых клеток; существуют также лимфоидные структуры, такие как паренхима ганглиев, но и лимфоидная ткань — в виде мелких фолликулов — и в костном мозге. Нам не известно выполняют ли последние и непосредственную роль в кроветворении посредством определенных общих клеток-штамм или путем стимулирующего трофического влияния на пролиферацию и дифференциацию (Берчану).
Частная патология крови выявит, что заболевания лимфоидного и миелоидного рядов различны. Глубокое поражение стромы и изменение первичной ретикулярной клетки определяет, тем не менее, нарушение обеих систем. Так, при острой недифференцированной лейкемии, рассеянной ретикулосаркоме (PC), нагрузочном ретикулезе, опухолевом гистиоцитозе поражаются обе системы с тяжелыми нарушениями и синдромами недостаточности кроветворения и иммунитета. Структурные связи в костном мозге обусловливают лимфоидные злокачественные метаплазии, смещение миелоидных клеток. При хронической лимфатической, острой лимфобластической лейкемиях или рассеянной лимфосаркоме также наблюдается смещение кроветворной ткани.
Однако существуют патологические аргументы, говорящие о дифференцированной структурной организации этих двух систем. Так, первичная или вторичная аплазия костного мозга не сопровождается аплазией лимфоидной системы; аплазия лимфоидной системы при иммунодефицитных заболеваниях в принципе не поражает кроветворную миелоидную систему. Тем не менее существуют — в настоящее время хорошо известные в иммунопатологии — комплексные иммунодефицитные заболевания, одновременно поражающие обе системы. Так, синдром ретикулярной агенезии и определенные заболевания дисгаммаглобулинемией сопровождаются одновременным нарушением иммуной лимфоидной системы и расстройствами процессов возрождения зернистых и тромбоцитных клеток (Берчану).
Функциональная взаимосвязь в норме, равно как и взаимообусловленность при патологии крови и иммуноклеточной системы говорят в пользу дифференциации миелоидной и лимфоидной систем. Однако эту дифференциацию следует рассматривать, в основном, как результат определенной степени приспособительного отбора по сравнению с условиями среды и структурного микроклимата в послезародышевой жизни. Вместе с тем организационная, генетическая и регенеративная взаимосвязи в зародышевой жизни свидетельствуют о структурном и функциональном единстве организации крови, рассматриваемой как высокодифференцированная мезенхимальная ткань.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Кровь и лимфа
1.Понятие о системе крови и ее компонентах. Кровь как ткань. Форменные элементы крови. Эритроциты: количество, размеры, форма. Строение. Химический состав, функции, продолжительность жизни.Ретикулоциты.
Понятие о системе крови. Система крови включает в себя кровь, органы кроветворения- красный костный мозг,тимус, селезёнку, лимфатические узлы, лимфоидную ткань некроветворных органов.Элементы системы крови имеют общее происхождение-из мезенхимы и структурно –функциональные особенности,подчиняются общим законам нейрогуморальной регуляции,объедененны тесным взаимодействием всех звеньев.Система крови тесно связана с лимфотической и иммунной системами. Образование иммуноцитов происходит в органах кроветворения, а их циркуляция – в периферической крови и лимфе. Кровь и лимфа, являющиеся тканями мезенхимного происхождения, образуют внутреннюю среду организма. Они состоят из плазмы и форменных элементов.Кровь- является циркулирующей по кровеносным сосудам жидкой тканью,состоящая из плазмы и форменных элементов:эритроцитов,лейкоцитов,и кровенных пластинок(тромбоцитов)
Функции крови:
1.Трофические (доставка к тканям питательных веществ).
2. Защитная (фагоцитоз, иммунная защита).
3. Газообмен, т.е. дыхательная функция.
4. Гомеостатическая функция.
5. Интегративная функция (участвует в гуморальной регуляции, транспортируя гормоны и биологически активные вещества).
У здорового человека соотношение объема плазмы и форменных элементов составляет:плазма-55-60%,а форменных элементов 40-45%.Общий объем крови составляет в среднем около 7% от веса тела (около 5 л у взрослого).
Плазма состоит на 90-93% из воды, 7-10% сухого вещества(белков 6,6-8,5% - альбумины, глобулины, фибриноген ) и 1,5-3,5% других органических и минеральных соединений. РН плазмы около 7,36.
Количество форменных элементов в единице объема крови называется гемаграммой:
Эритроциты: у мужчин 3,9-5,5х1012/л, у женщин 3,7.-4,9,х1012/л
Лейкоциты 4-9х109/л
Кровяные пластинки 200-400х109/л.
Эритроциты - самые многочисленные клетки крови-красные кровяные тельца,безъядерные клетки.Повышение показателя выше верхней границы нормы называется эритроцитозом, понижение ниже нижний границы нормы - эритропенией.
Эритроциты в цитоплазме содержат железосодержащий пигмент (гем) связанный белком (глобин) - гемоглобин, который связывает кислород или углекислый газ. Основная функ-ция эритроцитов - обеспечение газообмена: доставка к тканям кислорода и удаление углекислого газа.Так же эритроциты могут адсорбировать на своей поверхности самые различные вещества (аминокислоты, антигены, антитела, лекарственные вещества, токсины и т.д) и транспортировать по всему организму; благодаря амфатерным свойствам гемоглобина эритроциты участвуют в поддержании РН крови.Форма- двояковогнутого диска (дискоциты). У здорового человека в крови может встречаться до 10 штук на 1000 клеток (‰) атипичные формы эритроцитов:
1. Эхиноцит -стареющие формы эритроцитов.(около 6%)
2. Стоматоциты- куполообразные(1-3%)
3. Планоцит - клетка с плоской поверхностью.
4. Сфероцит - клетка шарообразной формы.
У здорового человека около 75% эритроцитов имеют диаметр 7-8 мкм (нормоциты), по 12% меньше 7мкм (микроциты) и больше 8 мкм (макроциты).
По степени зрелости среди эритроцитов различают зрелые эритроциты и ретикулоциты(молодые). Ретикулоциты - это только что вышедшие из красного костного мозга эритроциты; в цитоплазме имеют остатки органоидов, выявляющиеся при окраске специальными красителями в виде зерен и нитей, обуславливающие сетчатый рисунок - отсюда и название: ретикулоцит = "сетчатая клетка". Ретикулоциты в течении 1 суток после выхода из красного костного мозга дозревают, теряют остатки органоидов и пре-вращаются в зрелые эритроциты. Количество ретикулоцитов в норме 1-5‰. Увеличение показателя свидетельствует об усилении эритроцитопоэза.
Эритроциты образуются в красном костном мозге, функционируют в кровеносных сосудах, в среднем живут около 120 суток, стареющие и поврежденные эритроциты разрушаются в селезенке. Железо гемоглобина погибших эритроцитов доставляется моноцитами в красный костный мозг и повторно используется в новых эритроцитах.
2.Кровь как ткань. Форменные элементы крови. Кровяные пластинки(тромбоциты):количество.размеры,форма,строение,химический состав, функции, продолжительность жизни.
Тромбоциты имеют вид бесцветных телец,и форму-двоякавыпуклого диска.
Тромбоциты - это мелкие фрагменты мегакариоцитов (находятся в красном костном мозге), диаметр кровяных пластинок 2-3 мкм.При окраске мазков крови в кровенных пластинках выявляется более светлая часть периферическая часть—гиаломер,и более тёмная,зернистая часть- грануломер.Кровяные пластинки содержат тромбопластические факторы свертываемости крови и при нарушении целостности стенки кровеносных со-судов обеспечивают свертывание крови в поврежденном участке и предотвращают кровопотерю. В норме содержание кровяных пластинок 200-400х109/л. Снижение показателя приводит к гемофилии (кровь не сворачивается, а повышение - к тромбозам сосудов. Плазмолемма тромбоцитов имеет толстый слой гликокаликса, образует инвагинации с отходящими канальцами ,в плазмолемме содержаться гликопротеины, которые выполняют функцию поверхностных рецепторов,участвующих в процессах адгезии и агрегации кровенных пластинок. Цитоскелет в тромбоцитах хорошо развит и представлен актиновыми микрофиламентами и пучками микротрубочек, расположенными циркулярно в гиаломере. Элементы цитоскелета обеспечивают поддержание формы кровяных пластинок, участвуют в образовании их отростков. Актиновые филаменты участвуют в сокращении объёма образующихся кровяных тромбов.В кровяных пластинках имеется две системы канальцев и трубочек. Первая- это открытая система каналов,через эту систему выделяется в плазму содержимое гранул тромбоцитов и происходит поглощение веществ. Вторая- плотная тубулярная система ,которая представлена группами трубочек с электронно – плотным аморфным материалом.,образуются в аппарате Гольджи. Плотная тубулярная система является местом синтеза циклоксигеназы и простагландинов.В грануломере выявлены органеллы(рибосомы,элементами эдоплазматической сети аппарата Гольджи,митохондрии,лизосомы,пероксисомы), включения и специальные гранулы.Специальные гранулы в количестве 60-120 составляют основную часть грануломера и представлены двумя главными типами. Первый тип : альфа гранулы- самые крупные,они содержат различные белки и гликопротеины,принимающие участие в процессах свёртывания крови. Второй тип – (дельта гранулы) представлены плотными тельцами, главными компонентами гранул является серотонин, накапливаемый из плазмы, и др.биогенные амины, кальций,АТФ,АДФ в высоких концентрациях.Кроме того, имеется и 3 вид гранул, представленные лизосомами.Важной функцией тромбоцитов является их участие в метаболизме серотонина.Тромбоциты – это практически единственные элементы крови,в которых из плазмы накапливаются резервы серотонина.Продолжительность жизни –в среднем 9-10.
3.Классификация лейкоцитов. Зернистые лейкоциты(гранулоциты). Их разновидности, количество,размеры,строение,функции,продолжительность жизни. Лейкоцитарная формула.
Лейкоциты - белые кровяные тельца, в отличие от эритроцитов свои функции выполняют в тканях, для этого они обладают способностью передвигаться при помощи псевдоподий. Количество лейкоцитов в крови у здорового человека колеблется в пределах 4-9х109/л. Увеличение показателя выше нормы - лейкоцитоз, снижение нормы - лейкопения. Среди лейкоцитов различают гранулоциты (зернистые лейкоциты) и агранулоциты (незернистые лейкоциты).Зернистые лейкоциты-в соответствии с окраской зернистости делятся на эозинофильные, базофильные и нейтрофильные гранулоциты. По структуре ядра среди гранулоцитов различают:
1. Юные - ядро бобовидное или подковообразное, хроматин рыхлый (светлый), т.е. слабокондициро-ванный.
2. Палочкоядерные - ядро палочкообразное или в виде подковы , несегментированное (без перетяжек), хроматин уплотнен (темный).
3. Сегментоядерные - ядро состоит из 3-5 сегментов, соединенных тонкими перемычками; хроматин плотный, темный, т.е. сильно конденсированный.
Эти 3 разновидности являются одними и теми же клетками в разной степени зрелости - т.е. из красного костного мозга гранулоцит выходит в виде юной клетки, сначала превращается в палочкоядерную, а затем в сегментоядерную.
Нейтрофильные гранулоциты - лейкоциты с мелкими (пылевидными), равномерно распределенными по цитоплазме, воспринимающие и кислые и основные красители гранулами. Гранулы представляют собой лизосомы, содержащие полный набор протеолитических ферментов. У здорового человека со-держание юных нейтрофилов 0-1%, палочкоядерных - 1-6%, сегментоядерных -60-65%. Функция нейтрофилов - защита путем фагоцитоза и переваривания микроорганизмов, инородных частиц, продуктов распада тканей. Поэтому нейтрофилов еще называют микрофагами.Продолжительность жизни нейтрофилов составляет 5-9 суток.
Эозинофильные гранулоциты - лейкоциты с крупными, равномерно распределенными по цитоплазме, окрашивающиеся кислой краской эозином гранулами. В гранулах содержится гидролитические ферменты и гистаминаза. По структуре ядра также встречаются юные, палочкоядерные и сегментоядерные эозинофилы. Количество эозинофилов в крови 0,5-5%. Функции: участие в аллергических реакциях организма путем фагоцитоза связанных антителами антигенов и разрушения ферментом гистаминазой избытка медиатра аллергических реакций - гистамина.
Базофильные гранулоциты - лейкоциты с крупными, грубыми, расположенными по цитоплазме неравномерно (сгруппированные), окрашивающиеся основными красителями не в цвет красителя (мета-хромазия) гранулами. Гранулы часто видны сверху, на фоне ядра. В гранулах содержится медиатор аллергических реакций - гистамин, а также
противосвертывающее вещество - гепарин. В норме количество базофилов в крови составляет 0-1%. Функции: базофилы участвуют при аллергических реакциях организма выделяя медиатр аллергических реакций - гистамин ( гистамин повышает проницаемость стенок кровеносных сосудов, тем самым облегчает выход остальных лейкоцитов из кровеносных сосудов в ткани для борьбы с антигенами), снижают свертываемость крови вырабатывая гепарин.Находятся в крови около 1-2 суток.
При клинических анализах исследуют химический состав крови, определяют количество эритроцитов, лейкоцитов,гемоглобина,резестентность эритроцитов,СОЭ и др.Важное значение для характеристики состояния организма имеет так называемый дифференциальный подсчёт лейкоцитов. Определенные процентные соотношения лейкоцитов называют лейкоцитарной формулой.
Лимфа представляет собой слегка желтоватую жидкость белковой природы, протекающую в лимфатических капиллярах и сосудах. Она состоит из лимфоплазмы и форменных элементов. По химическому составу лимфоплазма близка к плазме крови,но содержит меньше белков(альбумины,глобулины,часть белка составляют ферменты диастаза, липаза, и гликолитические ферменты.Форменные элементы лимфы представлены главным образом лимфоцитами(98%), а так же моноцитами,иногда в её составе обнаруживаются эритроциты.Лимфа накапливается в лимф.капилярах тканей и органов,куда под влиянием различных факторов, в частности осмотическое и гидростатическое давления, из тканей постоянно поступают различные компоненты лимфоплазмы. Из капилляров лимфа перемещается в периферические лимфатические сосуды, по ним –в лимфатические узлы,затем в крупные лимф.сосуды и вливаются в кровь. Состав лимфы меняется. Различают лимфу периферическую(до лимф.узлов), промежуточную(после прохождения через лимф.узлы) и центральную(лимфу грудного и правого лимфатического протоков). Процесс лимфообразования тесно связан с поступлением воды и др.веществ из крови межклеточные пространства и образованием тканевой жидкости.
ЛЕКЦИЯ 7. Кроветворение
1. Кроветворение(гемоцитопоэз)процесс образования форменных элементов крови.
Различают два вида кроветворения:
Кроме того, гемопоэз подразделяется на два периода:
Эмбриональный период гемопоэза приводит к образованию крови как ткани и потому представляет собой гистогенез крови. Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови как ткани.
Эмбриональный период гемопоэза осуществляется поэтапно, сменяя разные органы кроветворения. В соответствии с этим эмбриональный гемопоэз подразделяется на три этапа:
Желточный этап осуществляется в мезенхиме желточного мешка, начиная со 2—3-ей недели эмбриогенеза, с 4-ой недели он снижается и к концу 3-го месяца полностью прекращается. Процесс кроветворения на этом этапе осуществляется следующим образом, вначале в мезенхиме желточного мешка, в результате пролиферации мезенхимальных клеток, образуются "кровяные островки", представляющие собой очаговые скопления отростчатых мезенхимальных клеток. Затем происходит дифференцировка этих клеток в двух направлениях (дивергентная дифференцировка):
· периферические клетки островка уплощаются, соединяются между собой и образуют эндотелиальную выстилку кровеносного сосуда;
· центральные клетки округляются и превращаются в стволовые клетки.
Из этих клеток в сосудах, то есть интраваскулярно начинается процесс образования первичных эритроцитов (эритробластов, мегалобластов). Однако часть стволовых клеток оказывается вне сосудов (экстраваскулярно) и из них начинают развиваться зернистые лейкоциты, которые затем мигрируют в сосуды.
Наиболее важными моментами желточного этапа являются:
· образование стволовых клеток крови;
· образование первичных кровеносных сосудов.
Несколько позже (на 3-ей неделе) начинают формироваться сосуды в мезенхиме тела зародыша, однако они являются пустыми щелевидными образованиями. Довольно скоро сосуды желточного мешка соединяются с сосудами тела зародыша, по этим сосудам стволовые клетки мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов (в первую очередь печень), в которых затем и осуществляется кроветворение.
Следовательно, кроветворение на втором этапе в названных органах осуществляется почти одновременно, только экстраваскулярно, но его интенсивность и качественный состав в разных органах различны.
Медулло-тимусо-лимфоидный этап кроветворения. Закладка красного костного мозга начинается со 2-го месяца, кроветворение в нем начинается с 4-го месяца, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, то есть является универсальным кроветворным органом. В то же время в тимусе, в селезенке и в лимфатических узлах осуществляется лимфоидное кроветворение. Если красный костный мозг не в состоянии удовлетворить возросшую потребность в форменных элементах крови (при кровотечении), то гемопоэтическая активность печени, селезенки может активизироваться — экстрамедуллярное кроветворение.
Постэмбриональный период кроветворения — осуществляется в красном костном мозге и лимфоидных органах (тимусе, селезенке, лимфатических узлах, миндалинах, лимфоидных фолликулах).
Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.
2. Теории кроветворения:
· унитарная теория (А. А. Максимов, 1909 г.) — все форменные элементы крови развиваются из единого предшественника стволовой клетки;
· дуалистическая теория предусматривает два источника кроветворения, для миелоидного и лимфоидного;
· полифилетическая теория предусматривает для каждого форменного элемента свой источник развития.
В настоящее время общепринятой является унитарная теория кроветворения, на основании которой разработана схема кроветворения (И. Л. Чертков и А. И. Воробьев, 1973 г.).
В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток. Всего в схеме кроветворения различают 6 классов клеток:
· 1 класс — стволовые клетки;
· 2 класс — полустволовые клетки;
· 3 класс — унипотентные клетки;
· 4 класс — бластные клетки;
· 5 класс — созревающие клетки;
· 6 класс — зрелые форменные элементы.
Морфологическая и функциональная характеристика клеток различных классов схемы кроветворения.
1 класс — стволовая полипотентная клетка, способная к поддержанию своей популяции. По морфологии соответствует малому лимфоциту, является полипотентной, то есть способной дифференцироваться в любой форменный элемент крови. Направление дифференцировки стволовой клетки определяется уровнем содержания в крови данного форменного элемента, а также влиянием микроокружения стволовых клеток — индуктивным влиянием стромальных клеток костного мозга или другого кроветворного органа. Поддержание численности популяции стволовых клеток обеспечивается тем, что после митоза стволовой клетки одна из дочерних клеток становится на путь дифференцировки, а другая принимает морфологию малого лимфоцита и является стволовой. Делятся стволовые клетки редко (1 раз в полгода), 80 % стволовых клеток находятся в состоянии покоя и только 20 % в митозе и последующей дифференцировке. В процессе пролиферации каждая стволовая клетка образует группу или клон клеток и потому стволовые клетки в литературе нередко называются колоние—образующие единицы — КОЕ.
2 класс — полустволовые, ограниченно полипотентные (или частично коммитированные) клетки—предшественницы миелопоэза и лимфопоэза. Имеют морфологию малого лимфоцита. Каждая из них дает клон клеток, но только миелоидных или лимфоидных. Делятся они чаще (через 3—4 недели) и также поддерживают численность своей популяции.
3 класс — унипотентные поэтин—чувствительные клетки—предшественницы своего ряда кроветворения. Морфология их также соответствует малому лимфоциту. Способны дифференцироваться только в один тип форменного элемента. Делятся часто, но потомки этих клеток одни вступают на путь дифференцировки, а другие сохраняют численность популяции данного класса. Частота деления этих клеток и способность дифференцироваться дальше зависит от содержания в крови особых биологически активных веществ — поэтинов, специфичных для каждого ряда кроветворения (эритропоэтины, тромбопоэтины и другие).
Первые три класса клеток объединяются в класс морфологически неидентифицируемых клеток, так как все они имеют морфологию малого лимфоцита, но потенции их к развитию различны.
4 класс — бластные (молодые) клетки или бласты (эритробласты, лимфобласты и так далее). Отличаются по морфологии как от трех предшествующих, так и последующих классов клеток. Эти клетки крупные, имеют крупное рыхлое (эухроматин) ядро с 2 4 ядрышками, цитоплазма базофильна за счет большого числа свободных рибосом. Часто делятся, но дочерние клетки все вступают на путь дальнейшей дифференцировки. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения.
5 класс — класс созревающих клеток, характерных для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток — от одной (пролимфоцит, промоноцит), до пяти в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве могут попадать в периферическую кровь (например, ретикулоциты, юные и палочкоядерные гранулоциты).
6 класс — зрелые форменные элементы крови. Однако следует отметить, что только эритроциты, тромбоциты и сегментоядерные гранулоциты являются зрелыми конечными дифференцированными клетками или их фрагментами. Моноциты не окончательно дифференцированные клетки. Покидая кровеносное русло, они дифференцируются в конечные клетки — макрофаги. Лимфоциты при встрече с антигенами, превращаются в бласты и снова делятся.
Совокупность клеток, составляющих линию дифференцировки стволовой клетки в определенный форменный элемент, образуют его дифферон или гистологический ряд. Например, эритроцитарный дифферон составляет: стволовая клетка, полустволовая клетка предшественница миелопоэза, унипотентная эритропоэтинчувствительная клетка, эритробласт, созревающие клеткипронормоцит, базофильный нормоцит, полихроматофильный нормоцит, оксифильный нормоцит, ретикулоцит, эритроцит. В процессе созревания эритроцитов в 5 классе происходит: синтез и накопление гемоглобина, редукция органелл, редукция ядра. В норме пополнение эритроцитов осуществляется в основном за счет деления и дифференцировки созревающих клетокпронормоцитов, базофильных и полихроматофильных нормоцитов. Такой тип кроветворения носит название гомопластического кроветворения. При выраженной кровопотери пополнение эритроцитов обеспечивается не только усиленным делением созревающих клеток, но и клеток 4, 3, 2 и даже 1 классовгетеропластический тип кроветворения, предшествующий собой уже репаративную регенерацию крови.
3. В отличие от миелопоэза, лимфоцитопоэз в эмбриональном и постэмбриональном периодах осуществляется поэтапно, сменяя разные лимфоидные органы. В Т- и в В-лимфоцитопоэзе выделяют три этапа:
· этап антиген—независимой дифференцировки, осуществляемый в центральных иммунных органах;
· этап антиген—зависимой дифференцировки, осуществляемый в периферических лимфоидных органах.
На первом этапе дифференцировки из стволовых клеток образуются клетки-предшественницы соответственно Т- и В-лимфоцитопоэза. На втором этапе образуются лимфоциты, способные только распознавать антигены. На третьем этапе из клеток второго этапа формируются эффекторные клетки, способные уничтожить и нейтрализовать антиген.
Процесс развития Т- и В-лимфоцитов имеет как общие закономерности, так и существенные особенности и потому подлежит отдельному рассмотрению.
Первый этап Т-лимфоцитопоэза осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:
· 2 класс — полустволовые клетки-предшественницы лимфоцитопоэза;
· 3 класс — унипотентные Т-поэтинчувствительные клетки—предшественницы Т-лимфоцитопоэза, эти клетки мигрируют в кровеносное русло и с кровью достигают тимуса.
Второй этап — этап антигеннезависимой дифференцировки осуществляется в корковом веществе тимуса. Здесь продолжается дальнейший процесс Т-лимфоцитопоэза. Под влиянием биологически активного вещества тимозина, выделяемого стромальными клетками, унипотентные клетки превращаются в Т-лимфобласты — 4 класс, затем в Т-пролимфоциты — 5 класс, а последние в Т-лимфоциты — 6 класс. В тимусе из унипотентных клеток развиваются самостоятельно три субпопуляции Т-лимфоцитов: киллеры, хелперы и супрессоры. В корковом веществе тимуса все перечисленные субпопуляции Т-лимфоцитов приобретают разные рецепторы к разнообразным антигенным веществам (механизм образования Т-рецепторов остается пока невыясненным), однако сами антигены в тимус не попадают. Защита Т-лимфоцитопоэза от чужеродных антигенных веществ достигается двумя механизмами:
· наличием в тимусе особого гемато-тимусного барьера;
· отсутствием лимфатических сосудов в тимусе.
В результате второго этапа образуются рецепторные (афферентные или Т0-) Т-лимфоциты — киллеры, хелперы, супрессоры. При этом лимфоциты в каждой из субпопуляций отличаются между собой разными рецепторами, однако имеются и клоны клеток, имеющие одинаковые рецепторы. В тимусе образуются Т-лимфоциты, имеющие рецепторы и к собственным антигенам, однако такие клетки здесь же разрушаются макрофагами. Образованные в корковом веществе Т-рецепторные лимфоциты (киллеры, хелперы и супрессоры), не заходя в мозговое вещество, проникают в сосудистое русло и током крови заносятся в периферические лимфоидные органы.
Третий этап — этап антигенезависимой дифференцировки осуществляется в Т-зонах периферических лимфоидных органов — лимфоузлов, селезенки и других, где создаются условия для встречи антигена с Т-лимфоцитом (киллером, хелпером или супрессором), имеющим рецептор к данному антигену. Однако в большинстве случаев антиген действует на лимфоцит не непосредственно, а опосредованно — через макрофаг, то есть вначале макрофаг фагоцитирует антиген, частично расщепляет его внутриклеточно, а затем активные химические группировки антигена — антигенные детерминанты выносятся на поверхность цитолеммы, способствуя их концентрации и активации. Только затем эти детерминанты макрофагами передаются на соответствующие рецепторы разных субпопуляций лимфоцитов. Под влиянием соответствующего антигена Т-лимфоцит активизируется, изменяет свою морфологию и превращается в Т-лимфобласт, вернее в Т-иммунобласт, так как это уже не клетка 4 класса (образующаяся в тимусе), а клетка возникшая из лимфоцита под влиянием антигена.
Процесс превращения Т-лимфоцита в Т-иммунобласт носит название реакции бласттрансформации. После этого Т-иммунобласт, возникший из Т-рецепторного киллера, хелпера или супрессора, пролиферирует и образует клон клеток. Т-киллерный иммунобласт дает клон клеток, среди которых имеются:
· Т-киллеры или цитотоксические лимфоциты, которые являются эффекторными клетками, обеспечивающими клеточный иммунитет, то есть защиту организма от чужеродных и генетически измененных собственных клеток.
После первой встречи чужеродной клетки с рецепторным Т-лимфоцитом развивается первичный иммунный ответ — бласттрансформация, пролиферация, образование Т-киллеров и уничтожение ими чужеродной клетки. Т-клетки памяти при повторной встрече с тем же антигеном обеспечивают по тому же механизму вторичный иммунный ответ, который протекает быстрее и сильнее первичного.
Т-хелперный иммунобласт дает клон клеток, среди которых различают Т-памяти, Т-хелперы, секретирующие медиатор — лимфокин, стимулирующий гуморальный иммунитет — индуктор иммунопоэза. Аналогичен механизм образования Т-супрессоров, лимфокин которых угнетает гуморальный ответ.
Таким образом, в итоге третьего этапа Т-лимфоцитопоэза образуются эффекторные клетки клеточного иммунитета (Т-киллеры), регуляторные клетки гуморального иммунитета (Т-хелперы и Т-супрессоры), а также Т-памяти всех популяций Т-лимфоцитов, которые при повторной встрече с этим же антигеном снова обеспечат иммунную защиту организма в виде вторичного иммунного ответа. В обеспечении клеточного иммунитета рассматривают два механизма уничтожения киллерами антигенных клеток:
· контактное взаимодействие — "поцелуй смерти", с разрушением участка цитолеммы клетки-мишени;
· дистантное взаимодействие — посредством выделения цитотоксических факторов, действующих на клетку-мишень постепенно и длительно.
4. Первый этап В-лимфоцитопоэза осуществляется в красном костном мозге, где образуются следующие классы клеток:
· 2 класс — полустволовые клетки-предшественницы лимфопоэза;
· 3 класс — унипотентные В-поэтинчувствительные клетки-предшественницы В-лимфоцитопоэза.
Второй этап антигеннезависимой дифференцировки у птиц осуществляется в специальном центральном лимфоидном органе — фабрициевой сумке. У млекопитающих и человека такой орган отсутствует, а его аналог точно не установлен. Большинство исследователей считает, что второй этап также осуществляется в красном костном мозге, где из унипотентных В-клеток образуются В-лимфобласты — 4 класс, затем В-пролимфоциты — 5 класс и лимфоциты — 6 класс (рецепторные или В0). В процессе второго этапа В-лимфоциты приобретают разнообразные рецепторы к антигенам. При этом установлено, что рецепторы представлены белками-иммуноглобулинами, которые синтезируются в самих же созревающих В-лимфоцитах, а затем выносятся на поверхность и встраиваются в плазмолемму. Концевые химические группировки у этих рецепторов различны и именно этим объясняется специфичность восприятия ими определенных антигенных детерминант разных антигенов.
Третий этап — антигензависимая дифференцировка осуществляется в В-зонах периферических лимфоидных органов (лимфатических узлов, селезенки и других) где происходит встреча антигена с соответствующим В-рецепторным лимфоцитом, его последующая активация и трансформация в иммунобласт. Однако это происходит только при участии дополнительных клеток — макрофага, Т-хелпера, а возможно и Т-супрессора, то есть для активации В-лимфоцита необходима кооперация следующих клеток: В-рецепторного лимфоцита, макрофага, Т-хелпера (Т-супрессора), а также гуморального антигена (бактерии, вируса, белка, полисахарида и других). Процесс взаимодействия протекает в следующей последовательности:
· макрофаг фагоцитирует антиген и выносит детерминанты на поверхность;
· воздействует антигенными детерминантами на рецепторы В-лимфоцита;
· воздействует этими же детерминантами на рецепторы Т-хелпера и Т-супрессора.
Влияние антигенного стимула на В-лимфоцит недостаточно для его бласттрансформации. Это происходит только после активации Т-хелпера и выделения им активирующего лимфокина. После такого дополнительного стимула наступает реакция бласттрансформации, то есть превращение В-лимфоцита в иммунобласт, который носит название плазмобласта, так как в результате пролиферации иммунобласта образуется клон клеток, среди которых различают:
· плазмоциты, которые являются эффекторными клетками гуморального иммунитета.
Эти клетки синтезируют и выделяют в кровь или лимфу иммуноглобулины (антитела) разных классов, которые взаимодействуют с антигенами и образуются комплексы антиген-антитело (иммунные комплексы) и тем самым нейтрализуют антигены. Иммунные комплексы затем фагоцитируются нейтрофилами или макрофагами.
Однако активированные антигеном В-лимфоциты способны сами синтезировать в небольшом количестве неспецифические иммуноглобулины. Под влиянием лимфокинов Т-хелперов наступает во-первых, трансформация В-лимфоцитов в плазмоциты, во-вторых, заменяется синтез неспецифических иммуноглобулинов на специфические, в третьих, стимулируется синтез и выделение иммуноглобулинов плазмоцитами. Т-супрессоры активируются этими же антигенами и выделяют лимфокин, угнетающий образование плазмоцитов и синтез ими иммуноглобулинов вплоть до полного прекращения. Сочетанным воздействием на активированный В-лимфоцит лимфокинов Т-хелперов и Т-супрессоров и регулируется интенсивность гуморального иммунитета. Полное угнетение иммунитета носит название толерантности или ареактивности, то есть отсутствия иммунной реакции на антиген. Оно может обуславливаться как преимущественным стимулированием антигенами Т-супрессора, так и угнетением функции Т-хелперов или гибелью Т-хелперов (например, при СПИДе).
ЛЕКЦИЯ 6. Кровь и лимфа
1. Кровь и лимфа — это ткани внутренней среды организма, они является разновидностью соединительной ткани.
У данных видов тканей имеются следующие особенности: мезенхимальное происхождение, большой удельный вес межуточного вещества, большое разнообразие структурных компонентов.
Функции крови делятся на:
Составные компоненты крови:
· клетки — форменные элементы;
· жидкое межклеточное вещество — плазма крови.
Масса крови составляет 5 % от массы тела человека, объем крови около 5,5 л. Депо крови — печень, селезенка, кожа и кишечник, в кишечнике может депонироваться до 1 л крови. Потеря человеком 1/3 объема крови ведет к смертельному исходу. Соотношение частей крови: плазма — 55—60 %, форменные элементы — 40—45 %. Плазма крови состоит из воды на 90—93 % и содержащихся в ней веществ — 7—10 %. В плазме содержатся белки, аминокислоты, нуклеотиды, глюкоза, минеральные вещества, продукты обмена. Белки плазмы крови: альбумины, глобулины (в том числе иммуноглобулины), фибриноген, белки-ферменты и другие. Функции плазмы — транспорт растворимых веществ.
В связи с тем, что в крови содержатся как истинные клетки (лейкоциты), так и постклеточные образования — эритроциты и тромбоциты, принято именовать их в совокупности форменными элементами.
Классификация форменных элементов:
Качественный состав крови (анализ крови) определяется такими понятиями как гемограмма и лейкоцитарная формула. Гемограмма — количественное содержание форменных элементов крови в одном литре или одном миллилитре.
Гемограмма взрослого человека:
· у женщины — 3,7—4,9 млн в литре;
· у мужчины — 3,9—5,5 млн в литре;
· II. тромбоцитов 200—400 тыс. в литре;
· III. лейкоцитов 3,8—9,0 тыс. в литре.
2. Эритроциты преобладающая популяция форменных элементов крови. Морфологические особенности:
· не содержит ядра;
· не содержит большинства органелл;
· цитоплазма заполнена пигментным включением — гемоглобином: гемжелезо, глобин—белок.
Размеры эритроцитов:
· Нормоциты 7,1—7,9 мкм (75 %);
· Макроциты больше 8 мкм (12,5 %);
· Микроциты меньше 6 мкм (12,5 %).
Форма эритроцитов:
· двояковогнутые диски — дискоциты (80 %);
· остальные 20 % составляют сфероциты, планоциты, эхиноциты, седловидные, двуямочные, стоматоциты.
По насыщенности гемоглобином эритроциты различаются:
Различают две формы гемоглобина:
· гемоглобин F — фетальный.
У взрослого человека гемоглобина А 98 %, гемоглобина F 2 %. У новорожденного ребенка гемоглобина А 20 %, гемоглобина F 80 %. Продолжительность жизни эритроцитов — 120 дней. Старые эритроциты разрушаются макрофагами, в основном, в селезенке, освобождающиеся из них железо используется созревающими эритроцитами. В периферической крови от 1 % до 5 % эритроцитов являются незрелыми и носят название ретикулоцитов. Их содержание отражает интенсивность эритроцитарного кроветворения и имеет важное диагностическое и прогностическое значение. Пойкилоцитоз — наличие в периферической крови большого количества эритроцитов разной формы. Анизоцитоз — наличие в периферической крови большого количества эритроцитов разного размера.
Функции эритроцитов:
· Дыхательная — транспорт газов (О2 и СО2);
· транспорт других веществ, абсорбированных на поверхности цитолеммы (гормонов, иммуноглобулинов, лекарственных веществ, токсинов и других).
II. Тромбоциты или кровяные пластинки, представляют собой фрагменты цитоплазмы особых клеток красного костного мозга —мегакариоцитов.
Составные части тромбоцита:
· Гиаломер — основа пластинки, окруженная цитолеммой;
· Грануломер — зернистость, представленная специфическими гранулами, а также фрагментами зернистой эндоплазматической сети, рибосомами, митохондриями и другими.
Размеры тромбоцитов — 2—3 мкм, форма округлая, овальная, отростчатая. По степени зрелости тромбоциты подразделяются на:
Продолжительность жизни тромбоцитов — 5—8 дней. Функции тромбоцитов: участие в механизмах свертывания крови посредством склеивания пластинок и образования тромба, разрушения пластинок и выделения одного из многочисленных факторов, способствующих превращению глобулярного фибриногена в нитчатый фибрин.
3. Лейкоцитыили белые кровяные тельца, ядерные клетки крови, выполняющие защитную функцию. Содержатся в крови от нескольких часов до нескольких суток, а затем покидают кровяное русло и проявляют свои функции в основном в тканях. Лейкоциты представляют собой неоднородную группу и подразделяются на несколько популяций. Классификация лейкоцитов основана на:
· содержании гранул в цитоплазме;
· отношении к красителям по тинкториальным свойствам;
· степени зрелости клеток данного типа;
· морфологии и функции клеток;
Классификация лейкоцитов:
I. зернистые (гранулоциты)— нейтрофилы (65—75 %): юные (0—0,5 %); палочкоядерные (3—5 %); сегментоядерные (60—65 %);
II. незернистые (агранулоциты):
лимфоциты (20—35 %): Т-лимфоциты; В-лимфоциты;
Лейкоцитарная формула — это процентное соотношение различных форм лейкоцитов (к общему числу лейкоцитов — 100 %). В таблице классификации лейкоцитов представлена лейкоцитарная формула здорового организма.
I. Нейтрофильные лейкоциты, нейтрофилы — самая большая популяция лейкоцитов (65—75 %). Морфологические особенности нейтрофилов:
· в цитоплазме имеются мелкие гранулы, окрашивающиеся в слабо оксифильный (розовый) цвет, среди которых различают неспецифические азурофильные гранулы — разновидность лизосом, специфические гранулы, другие органеллы развиты слабо. Размеры в мазке 10—12 мкм.
По степени зрелости нейтрофилы подразделяются на:
Увеличение процентного содержания юных и палочкоядерных форм нейтрофилов носит название сдвига лейкоцитарной формулы влево и является важным диагностическим показателем. По нейтрофилам определяют половую принадлежность крови — по наличию у одного из сегмента околоядерного сателлита (придатка) в виде барабанной палочки (у женщин). Продолжительность жизни нейтрофилов 8 дней, из них 8—12 ч они находятся в крови, а затем выходят соединительную и эпителиальную ткани, где и выполняют основные функции.
Функции нейтрофилов:
· фагоцитоз иммунных комплексов (антиген-антитело);
· бактериостатическая и бактериолитическая;
· выделение кейлонов и регуляция размножения лейкоцитов.
II. Эозинофильные лейкоциты или эозинофилы. Содержание в норме 1—5 %, размеры в мазках 12—14 мкм. Морфологические особенности эозинофилов:
· в цитоплазме крупная оксифильная (красная) зернистость, состоящая из двух типов гранул: специфические азурофильные — разновидность лизосом, содержащих фермент пероксидазу, неспецифические гранулы, содержащие кислую фосфатазу, другие органеллы развиты слабо.
Функции эозинофилов:
участвуют в иммунологических (аллергических и анафилактических) реакциях, угнетают (ингибируют) аллергические реакции посредством нейтрализации гистамина и серотонина несколькими способами:
· фагоцитируют гистамин и серотонин, выделяемые базофилами и тучными клетками, а также адсорбируют эти биологически активные вещества на цитолемме;
· выделяют ферменты, расщепляющие гистамин и серотонин внеклеточно;
· выделяют факторы, препятствующие выбросу гистамина и серотонина базофилами и тучными клетками;
· способны фагоцитировать бактерии, но в незначительной степени.
Участием эозинофилов в аллергических реакциях объясняется их повышенное содержание (до 20—40 % и более) в крови при различных аллергических заболеваниях (глистных инвазиях, бронхиальной астме, злокачественных новообразованиях и других). Продолжительность жизни эозинофилов 6—8 дней, из них нахождение в кровеносном русле составляет 3—8 ч.
III. Базофильные лейкоциты или базофилы
Это наименьшая популяция лейкоцитов (0,5—1 %), однако в общей массе в организме их огромное количество. Размеры в мазке 11—12 мкм. Морфологические особенности базофилов:
· крупное слабо сегментированное ядро;
· в цитоплазме содержатся крупные гранулы, окрашивающиеся основными красителями, метахроматично, за счет содержания в них гликозоаминогликанов — гепарина, а также гистамина, серотонина и других биологически активных веществ;
· другие органеллы развиты слабо.
Функции базофилов заключают в участии в иммунных (аллергических) реакциях посредством выделения гранул (дегрануляции)и содержащихся в них вышеперечисленных биологически активных веществ, которые и вызывают аллергические проявления (отек ткани, кровенаполнение, зуд, спазм гладкой мышечной ткани и другие). При встрече с антигенами (аллергенами) некоторые В-лимфоциты и плазмоциты вырабатывают иммуноглобулины Е, которые адсорбируются на цитолемме базофилов и тучных клеток. При повторной встрече базофилов с тем же антигеном на их поверхности образуются комплексы антиген-антитело, которые вызывают резкую дегрануляцию и выход в окружающую среду гистамина, серотонина, гепарина. Базофилы также обладают способностью фагоцитоза, но это не основная их функция.
4. Агранулоциты не содержат гранул в цитоплазме и подразделяются на две различные клеточные популяции - лимфоциты и моноциты.
Лимфоциты являются клетками иммунной системы и потому в последнее время все чаще называются иммуноцитами. Лимфоциты (иммуноциты), при участии вспомогательных клеток (макрофагов), обеспечивают иммунитет — защиту организма от генетически чужеродных веществ. Лимфоциты являются единственными клетками крови, способными при определенных условиях митотически делится. Все остальные лейкоциты являются конечными дифференцированными клетками. Лимфоциты весьма гетерогенная (неоднородная) популяция клеток.
Классификация лимфоцитов:
· средние 7—10 мкм;
· большие — больше 10 мкм.
В периферической крови около 90 % составляют малые лимфоциты и 10—12 % средние лимфоциты. Большие лимфоциты в нормальных условиях в периферической крови не встречаются. Электронно—микроскопически малые лимфоциты подразделяются на светлые (70—75 %) и темные (12—13 %).
Морфология малых лимфоцитов:
· относительно крупное круглое ядро, состоящее в основном из гетерохроматина (особенно в мелких темных лимфоцитах);
· узкий ободок базофильной цитоплазмы, в которой содержатся свободные рибосомы и слабо выраженные органеллы — эндоплазматическая сеть, единичные митохондрии и лизосомы.
Морфология средних лимфоцитов:
· более крупное и более рыхлое ядро, состоящее из эухроматина в центре и гетерохроматинапо периферии;
· в цитоплазме более развиты гранулярная и гладкая эндоплазматическая сеть, пластинчатый комплекс, больше митохондрий.
В крови содержится также 1—2 % плазмоцитов, образующихся из В-лимфоцитов.
II. По источникам развития лимфоциты подразделяются на:
· Т-лимфоцитыих образование и дальнейшее развитие связано с тимусом (вилочковой железой);
· В-лимфоциты, их развитие у птиц связано с особенным органом — фабрициевой сумкой, а у млекопитающих и человека пока точно не установленным ее аналогом.
Кроме источников развития Т- и В-лимфоциты отличаются между собой и по выполняемым функциям.
III. По функциям:
· а) В-лимфоциты и плазмоциты обеспечивают гуморальный иммунитет — защиту организма от чужеродных корпускулярных антигенов (бактерий, вирусов, токсинов, белков и других);
· б) Т-лимфоциты по выполняемым функциям подразделяются на киллеров, хелперов, супрессоров.
Киллеры или цитотоксические лимфоциты обеспечивают защиту организма от чужеродных клеток или генетически измененных собственных клеток, осуществляется клеточный иммунитет. Т-хелперы и Т-супрессоры регулируют гуморальный иммунитет: хелперы — усиливают, супрессоры —угнетают. Кроме того, в процессе дифференцировки и Т- и В-лимфоциты вначале выполняют рецепторные функции — распознают соответствующий их рецепторам антиген, а после встречи с ним трансформируются в эффекторные или регуляторные клетки.
В пределах своих субпопуляций и Т- и В-лимфоциты различаются между собой по типу рецепторов к различным антигенам. При этом разнообразие рецепторов столь велико, что имеются лишь небольшие группы (клоны) клеток, имеющие одинаковые рецепторы. При встрече лимфоцита с антигеном, к которому у него имеется рецептор, лимфоцит стимулируется, превращается в лимфобласт, а затем пролиферирует в результате чего образуется клон новых лимфоцитов с одинаковыми рецепторами.
по продолжительности жизни лимфоциты подразделяются на:
· короткоживущие (недели, месяцы)преимущественно В-лимфоциты;
· долгоживущие (месяцы, годы)преимущественно Т-лимфоциты.
Моноциты это наиболее крупные клетки крови (18—20 мкм), имеющие круглое бобовидное или подковообразное ядро и хорошо выраженную базофильную цитоплазму, в которой содержатся множественные пиноцитозные пузырьки, лизосомы и другие общие органеллы. По своей функции моноциты являются фагоцитами. Моноциты являются не вполне зрелыми клетками. Они циркулируют в крови 2-е суток, после чего покидают кровеносное русло, мигрируют в разные ткани и органы и превращаются в различные формы макрофагов, фагоцитарная активность которых значительно выше моноцитов. Моноциты и образующиеся из них макрофаги объединяются в единую макрофагическую систему или мононуклеарную фагоцитарную систему (МФС).
Читайте также:
- Опускание яичек. Перемещение яичка в мошонку. Схема опускания яичка.
- Канальцевая секреция. Регуляция канальцевой секреции. Секреция водородных ионов. Секреция ионов калия. Эффективный почечный плазмоток..
- Показания для стереотаксической операции при менингиоме и ее эффективность
- Лучевая диагностика периапикального склерозирующего остеита зуба
- Схемы химиотерапии болезни Ходжкина - монохимиотерапия, полихимиотерапия