Микроскопия
Добавил пользователь Morpheus Обновлено: 21.12.2024
Микроскопия может быть сделана быстро, но точность зависит от опыта работника лаборатории и качества оборудования. Инструкции часто ограничивают использование врачами микроскопии в диагностических целях вне сертифицированной лаборатории.
Может потребоваться микроскопическое исследование тканей, чтобы отличить инвазивное заболевание от поверхностной колонизации — это различие сложно установить с помощью метода культивирования.
Большинство образцов обрабатывают специальными красителями, которые окрашивают болезнетворные микроорганизмы, что позволяет выделить их на общем фоне, хотя для выявления грибов и некоторых других патогенов, также могут использоваться влажные препараты Срезы нефиксированной ткани (влажные препараты) Микроскопия может быть сделана быстро, но точность зависит от опыта работника лаборатории и качества оборудования. Инструкции часто ограничивают использование врачами микроскопии в диагностических. Прочитайте дополнительные сведения неокрашенных образцов.
Поскольку микроскопическое обнаружение обычно требует концентрации микробов по меньшей мере около 1 × 10 4-5 /мл, большинство образцов биологической жидкости (например, спинномозговая жидкость) перед исследованием концентрируются (например, центрифугированием).
Окрашивание по Граму
Окрашивание по Граму обеспечивает следующее:
Классифицирует бактерии в соответствии с тем, дают ли они прочное соединение с кристаллвиолетом при окрашивании этим красителем или нет (грамположительные окрашиваются в синий цвет, грамотрицательные – в красный)
Позволяет определить морфологию клеток (например, бациллы, кокки) и их расположение относительно друг друга (например, скопления, цепочки, диплоиды)
Идентифицируют полиморфноядерные лейкоциты, указывая на бактериальную инфекцию, а не на колонизацию
Данные характерные черты микроорганизмов могут быть основанием для назначения той или иной антибактериальной терапии в период, предшествующий окончательной идентификации. После окраски по Граму обнаружение в образце смеси микроорганизмов с различными морфологическими характеристиками и окрашиванием предполагает зараженный образец или полимикробный характер бактериальной инфекции. Обнаружение большого количества плоскоклеточных клеток в образце мокроты позволяет предположить, что он загрязнен слюной и поэтому имеет ограниченную диагностическую ценность.
Для окрашивания по Граму лаборанты фиксируют материал образца на предметном стекле путем нагревания, а затем окрашивают его, последовательно обрабатывая образец кристаллическим фиолетовым красителем Грама, йодом, обесцвечивающим реагентом и контрастирующим красителем (как правило, сафранином).
Кислотостойкие и модифицированные кислотостойкие красители
Эти красители используются для идентификации следующих микроорганизмов:
Кислотоустойчивые микроорганизмы ( вид Mycobacterium Туберкулез (ТБ) Туберкулез (ТБ) является хронической прогрессирующей микобактериальной инфекцией, часто имеющей латентный период после начального инфицирования. Чаще всего ТБ поражает легкие. Симптомы включают. Прочитайте дополнительные сведения Умеренно кислотоустойчивые организмы (в первую очередь вид Nocardia Нокардиоз Нокардиоз – острая или хроническая, часто диссеминированная, гнойная или гранулематозная инфекция, вызываемая различными анаэробными почвенными сапрофитами грам-позитивной бациллы рода Nocardia. Прочитайте дополнительные сведенияRhodococcus и связанные с ним роды
Ооцисты некоторых паразитов (например, Cryptosporidium Криптоспоридиоз Криптоспоридиоз – инфекция, вызываемая простейшими вида Cryptosporidium. Основной признак – водянистая диарея, часто с другими признаками нарушения по желудочно-кишечного тракта. Болезнь. Прочитайте дополнительные сведения Cyclospora cayetanensis. Признаки включают водянистую диарею с симптоматикой желудочно-кишечного тракта и системными признаками. Диагноз. Прочитайте дополнительные сведения Cyclospora cayetanensis. Признаки включают водянистую диарею с симптоматикой желудочно-кишечного тракта и системными признаками. Диагноз. Прочитайте дополнительные сведения Balantidium coli)
Хотя обнаружение микобактерий в мокроте требует не менее 10 000 микроорганизмов/мл, а микобактерии часто присутствуют в организме человека в меньших концентрациях, таким образом, чувствительность метода весьма ограничена. Обычно несколько мл мокроты дезактивируют гидроокисью натрия и концентрируют центрифугированием для кислотостойкого окрашивания. Это улучшает диагностику, хотя некоторые умеренно кислотостойкие организмы трудно отличить от микобактерий.
Флуоресцентное окрашивание
Флуоресцентное окрашивание позволяют обнаружить возбудителей при более низких концентрациях ( × 10 4 клеток/мл). Примеры:
Акридиновый оранжевый (бактерии и грибы)
Аурамин-родамин и аурамин О (микобактерии)
Калькофлюор белый (грибы, особенно дерматофиты)
Соединение флуоресцентного красителя с антителом, направленным на болезнетворный микроорганизм (прямая или непрямая иммунофлюоресценция), увеличивает чувствительность и специфичность диагностики. Однако эти анализы трудно читать и интерпретировать, и немногие (например, прямые флуоресцентные анализы антител Pneumocystis и Legionella) коммерчески доступны и обычно используются.
Срезы нефиксированной ткани (влажные препараты)
Срез нефиксированной ткани неокрашенных образцов может быть использован с помощью темнопольной микроскопии для обнаружения следующего:
Электронная микроскопия
Электронная микроскопия – один из методов исследования микроструктуры твердых тел, их электрических и магнитных полей, локального состава с применением совокупности электронно-зондовых методов. Данная технология была запатентована в 1931 году Р. Руденбергом, который создал первый в мире электронный микроскоп. Сегодня – это один из наиболее эффективных и передовых методов исследования, который широко используется на предприятиях, в научных, учебных лабораториях.
Метод электронной микроскопии
Данная технология стала основой в создании электронных микроскопов – приборов, в которых для построения изображения используется не световой луч, а поток электронов в вакуумной среде. Роль оптических линз, которые используются в обычных микроскопах, здесь отведена электронному полю. Именно оно и фокусирует электроны. Электромагнитное поле формируется электромагнитными катушками.
Изображение передается на флюоресцирующий экран, где его можно сфотографировать и рассмотреть детально. К изучаемым объектам предъявляется ряд требований:
- Необходима предварительная фиксация и обработка. Объекты в процессе работы будут находиться в глубоком вакууме.
- Маленькая толщина. Поток электронов будет сильно поглощаться объектом. И большую толщину он не «пробьет». В качестве объектов используются срезы, толщиной от 20 до 50 нм. Для удобства работы их размещают на тонкие прозрачные пленки.
- Равномерность слоя. Перед началом исследования проводится механическая обработка. Она способна обеспечить постоянную толщину образца.
Разрешающая способность у электронных микроскопов значительно выше, чем у оптических. Величина 0,15 нм (15 А) позволяет получать увеличение в миллионы раз, что идеально подходит для изучения микроскопических объектов.
Основные особенности
Суть метода электронной микроскопии в том, что через исследуемый образец подается электронный пучок разной энергии. Под воздействием электромагнитного поля он фокусируется на поверхности в виде пятна, в диаметре не превышающего 5 нм. Это пятно и выполняет «изучение» объекта. Соприкасаясь с поверхностью, электронный пучок частично проникает в нее, вытесняя не только электроны, но и фотоны. Они попадают на лучевую трубку, где и из них и формируется изображение.
В сравнении со световыми (оптическими) микроскопами, электронные обладают преимуществами:
- Можно получать очень большое увеличение (вплоть до 300000) с сохранением высокого разрешения, вплоть до атомов. Такой результат достигается при прямом наблюдении объекта. То есть не требуется дополнительных увеличений.
- Позволяют изучать химический состав образца по точкам. Используется спектральный анализ рентгеновского излучения, которое возбуждается электромагнитным потоком.
- Пользователь получает прямую электронно-оптическую информацию об исследуемом объекте. При необходимости ее можно будет дополнить сопутствующими данными, основываясь на электронной дифракции электронов с веществом. Как пример: при помощи дифракционного контраста изображений определяются кристаллографические показатели.
- Обеспечивает возможность дополнительного воздействия на объект в ходе исследования. Его можно нагревать, облучать, деформировать, намагничивать. Наблюдение за процессами будет динамическим. Есть возможность фото- и видеофиксации происходящего. Качество изображения будет достаточно высоким.
- Есть возможность наблюдать за рельефом поверхности, анализируя катодолюминесценцию. Такую возможность предоставляет электронная растровая разновидность микроскопии.
Виды электронной микроскопии
Выделяют 2 основных вида электронной микроскопии:
- Просвечивающая или трансмиссионная – ПЭМ.
- Сканирующая или растровая – СЭМ.
Просвечивающая электронная микроскопия
В микроскопах, работающих по этой технологии на объект, воздействует пучок ускоренных электронов, обладающих энергией от 50 до 200 кэВ. Те электроны, которые образец не пропустит, будут отклоняться на небольшой угол. И они, и те, которые пройдут через исследуемый объект с незначительными энергетическими потерями, попадают на магнитные линзы. В результате на фотопленке или люминесцентном экране формируется изображение внутренней структуры. Хорошие результаты дает при исследовании ультратонких образцов – менее 0,1 мкм в толщину.
При работе с ПЭМ одна из наиболее важных задач – различать природу контрастов:
- Абсорбционный. Результат неупругого рассеивания электронов, которые проходят через образец. Более плотные элементы будет выделяться темным на общем белом фоне. Если состав образца однородный, контрастировать будут участки разной толщины. Применяется при исследовании микрочастиц на аморфной пленке.
- Дифракционный. Формируется при упругом рассеивании электронов, которые проходят через исследуемый образец на неподвижных и стандартно размещенных атомах кристаллической решетки. Подходит для определения кристаллической структуры и размеров решетки.
- Амплитудный. Контраст такого типа образуется в результате выделения одного конкретного рефлекса из общей дифракционной картины. Его изображение передается на оптическую ось. При этом прямой пучок окажется на экране светлым, а тот, который отклонился (дифрагированный) – темным. Неоднородности укажут на дефекты кристаллической решетки. Применяется такой метод исследования для определения несовершенства кристаллической решетки, ее природы и свойств.
- Фазовый. Образуется при многопучковой электронной дифракции как результат уменьшения или увеличения амплитуды волн с разным сдвигом по фазе. Позволяет определять ориентацию кристаллических решеток разных фаз образца, дефекты решеток.
Одна из разновидностей ПЭМ – просвечивающая электронная микроскопия высокого разрешения (ВРЭМ). Формируется в случае, когда пучок электронов падает параллельно оси кристаллов в условиях фазового контраста. Позволяет диагностировать даже мельчайшие неоднородности кристаллической решетки.
Сканирующая электронная микроскопия
Сканирующей электронной микроскопией (СЭМ) получают изображения поверхности исследуемого образца с высокой разрешающей способностью. Получают трехмерные картинки, которые будут удобными в процессе изучения структуры. Дополнительно можно использовать методики EDX, WDX, чтобы получить информацию о химическом составе околоповерхностных слоев.
В оборудовании сфокусированный электронный пучок средней энергии сканирует образец. Предусмотрено несколько режимов работы:
- Режим отраженных электронов.
- Режим вторичных электронов.
- Режим катодолюминиценции и пр.
Эти методики позволяют не только изучать свойства поверхности, но и получать наглядную информацию о структурах, расположенных на несколько микрон ниже верхнего слоя.
СЭМ может работать только с образами, которые можно погружать в вакуум – твердыми. Жидкие среды предварительно подвергают криозаморозке. Форма и размеры образца ограничиваются только размерами рабочей камеры микроскопа. Эффективность исследования можно повысить путем напыления слоя токопроводящего материала.
Возможности
Технология электронной микроскопии постоянно развивается:
- совершенствуются способы подготовки образцов;
- разрабатываются методики для получения более качественной и широкой информации;
- улучшается электронная оптика;
- повышается чувствительность методов анализа применением спектрометрических систем;
- разрабатываются методики компьютерной обработки изображений с целью получения более широкой информации о структуре;
- тестируются методы компьютеризации, автоматизации путем подключения к микроскопу дополнительной аппаратуры и пр.
Благодаря последним наработкам метод электронной микроскопии используют уже и при работах с влажными образцами, исключая нарушение их структуры и локального состава. Для этого применяется низкотемпературное замещение воды, сверхбыстрое замораживание в среде хладагента, прижим к металлу, который охлаждается жидким азотом и пр. Существенно возможности метода расширило использование компьютерной техники, в частности математическая обработка электронных изображений. Теперь изображения можно запоминать, корректировать контрастность, добавлять оттенки цветов, выделять микроструктуры, убирать шумы, выделять границы исследуемых участков и пр.
Области применения
Метод электронной микроскопии используют для изучения поверхности объектов, ультратонких срезов тканей, микробов. С его помощью определяют строение жгутиков, вирусов и пр. Оборудование, основанное на этой технологии, широко используется в различных научных и производственных отраслях:
- Полупроводники, хранение данных. Выполняется анализ дефектов, трехмерная метрология, определяются неисправности, редактируются рабочие схемы.
- Биология и медицина. Электронные микроскопы применяют в криобиологии, электронной и клеточной томографии, вирусологии, стекловании. С их помощью определяют локализацию белков, анализируют частички, выполняют фармацевтический контроль качества, получают трехмерные изображения тканей.
- Промышленности. Электронные микроскопы позволяют снимать плоские и трехмерные микрохарактеристики, параметры частиц, проводить динамические эксперименты с материалами, получения изображения высокого разрешения. Они применяются в химической, нефтехимической горнодобывающей отрасли, микротехнологии, судебной медицине и пр.
- Научно-исследовательские лаборатории. Электронная микроскопия позволяет делать квалификацию материалов, создавать нанопрототипы, исследовать микроструктуры металлов, подбирать материалы и образцы. Микроскопы также применяются для тестирования и снятия характеристик.
Главная задача – подобрать микроскоп, работающий электронным методом под особенности предстоящих работ. В каталоге компании «Sernia Инжиниринг» можно подобрать подходящее оборудование для любой научно-исследовательской и производственной задачи. Приборы поставляются по Москве, Санкт-Петербургу и в другие регионы РФ. Все они имеют сертификаты соответствия, на них действуют гарантии. Узнать актуальные цены, условия сотрудничества, получить консультации и помощь в выборе можно у менеджеров компании. Свяжитесь с ними по телефону или через онлайн-форму.
А.С.Илюшин, А.П.Орешко. Введение в дифракционный структурный анализ. М.: физический факультет МГУ, 2008
Микроскопия - методы контраста
Метод светлого поля в проходящем свете применяется при исследовании прозрачных препаратов, у которых различные участки структуры по-разному поглощают свет (тонкие окрашенные срезы животных и растительных тканей, тонкие шлифы минералов и другие).
Пучок лучей из осветительной системы проходит препарат и объектив и дает равномерно освещенное поле в плоскости изображения. Элементы структуры препарата частично поглощают и отклоняют падающий на них свет, что и обусловливает появление изображения.
Метод может быть полезен и при наблюдении непоглащающих объектов, но лишь в том случае, если они рассеивают освещающий пучок настолько сильно, что значительная часть его не попадает в объектив.
Метод светлого поля в отраженном свете применяется для наблюдения непрозрачных объектов, к примеру, травленых шлифов металлов, биологических тканей и различных минералов. Освещение препарата производится сверху, через объектив, который одновременно выполняет и роль осветительной системы.
Изображение, как и при проходящем свете, создается за счет того, что разные участки препарата неодинаково отклоняют падающий на них свет, а отраженные лучи имеют различную интенсивность.
2. Темное поле
Темнопольная микроскопия основана на способности микроорганизмов сильно рассеивать свет. Для темнопольнои микроскопии пользуются обычными объективами и специальными темнопольными конденсорами.
Основная особенность темнопольных конденсоров заключается в том, что центральная часть у них затемнена и прямые лучи от осветителя в объектив микроскопа не попадают. Объект освещается косыми боковыми лучами и в объектив микроскопа попадают только лучи, рассеянные частицами, находящимися в препарате. Темнопольная микроскопия основана на эффекте Тиндаля, известным примером которого служит обнаружение пылинок в воздухе при освещении их узким лучом солнечного света.
Чтобы в объектив не попадали прямые лучи от осветителя, апертура объектива должна быть меньше, чем апертура конденсора. Для уменьшения апертуры в обычный объектив помещают диафрагму или пользуются специальными объективами, снабженными ирисовой диафрагмой.
При темнопольной микроскопии микроорганизмы выглядят ярко светящимися на черном фоне. При этом способе микроскопии могут быть обнаружены мельчайшие микроорганизмы, размеры которых лежат за пределами разрешающей способности микроскопа. Однако темнопольная микроскопия позволяет увидеть только контуры объекта, но не дает возможности изучить внутреннюю структуру. С помощью темнопольнои микроскопии изучают препараты типа раздавленная "капля". Предметные стекла должны быть не толще 1,1-1,2 мм, покровные 0,17 мм, без царапин и загрязнений.
При приготовлении препарата следует избегать наличия пузырьков и крупных частиц (эти дефекты будут видны ярко святящимися и не позволят наблюдать препарат). Для темнопольной применяют более мощные осветители и максимальный накал лампы.
Настройка темнопольного освещения в основном заключается в следующем:
1) устанавливают свет по Келеру;
2) заменяют светлопольный конденсор темнопольным;
3) на верхнюю линзу конденсора наносят иммерсионное масло или дистиллированную воду;
4) поднимают конденсор до соприкосновения с нижней поверхностью предметного стекла;
5) объектив малого увеличения фокусируют на препарат;
6) с помощью центрировочных винтов переводят в центр поля зрения светлое пятно (иногда имеющее затемненный центральный участок);
7) поднимая и опуская конденсор, добиваются исчезновения затемненного центрального участка и получения равномерно освещенного светлого пятна.
Если этого сделать не удается, то надо проверить толщину предметного стекла (обычно такое явление наблюдается при использовании слишком толстых предметных стекол - конус света фокусируется в толще стекла).
После правильной настройки света устанавливают объектив нужного увеличения и исследуют препарат.
3. Поляризация
Метод исследования в поляризованных лучах применяется в проходящем и в отраженном свете для так называемых анизотропных объектов, обладающих двойным луче преломлением или отражением.
Такими объектами являются многие минералы, угли, некоторые животные и растительные ткани и клетки, искусственные и естественные волокна. При исследовании анизотропных препаратов к обычной схеме микроскопа перед осветительной системой добавляют поляризатор, а после объектива - анализатор, находящиеся в скрещенном либо параллельном положении относительно друг друга.
При скрещенных поляризаторе и анализаторе в темном поле зрения микроскопа видны темные, светлые или окрашенные анизотропные элементы объекта. Вид этих элементов зависит от положения объекта относительно плоскости поляризации и от величины двойного лучепреломления.
Более точное определение оптических данных объекта делается с помощью различных компенсаторов (неподвижных кристаллических пластинок, подвижных клиньев и пластинок).
4. Фазовый контраст
При микроскопии неокрашенных микроорганизмов, отличающихся от окружающей среды только по показателю преломления, изменения интенсивности света (амплитуды) не происходит, а изменяется только фаза прошедших световых волн. Поэтому глаз этих изменений заметить не может и наблюдаемые объекты выглядят малоконтрастными, прозрачными.
Для наблюдения таких объектов используют фазово-контрастную микроскопию, основанную на превращении невидимых фазовых изменений, вносимых объектом, в амплитудные, различимые глазом.
Фазово-контрастное устройство может быть установлено на любом световом микроскопе и состоит из:
1) набора объективов со специальными фазовым пластинками;
2) конденсора с поворачивающимся диском. В нем установлены кольцевые диафрагмы, соответствующие фазовым пластинкам в каждом из объективов;
3) вспомогательного телескопа для настройки фазового контраста.
Настройка фазового контраста заключается в следующем:
1) заменяют объективы и конденсор микроскопа на фазовые (обозначенные буквами Ph) ;
2) устанавливают объектив малого увеличения. Отверстие в диске конденсора должно быть без кольцевой диафрагмы (обозначенной цифрой "0");
3) настраивают свет по Келеру;
4) выбирают фазовый объектив соответствующего увеличения и фокусируют его на препарат;
5) поворачивают диск конденсора и устанавливают соответствующую объективу кольцевую диафрагму;
6) вынимают из тубуса окуляр и вставляют на его место вспомогательный телескоп. Настраивают его так, чтобы были резко видны фазовая пластинка (в виде темного кольца) и кольцевая диафрагма (в виде светлого кольца того же диаметра). С помощью регулировочных винтов на конденсоре совмещают эти кольца. Вынимают вспомогательный телескоп и вновь устанавливают окуляр.
Благодаря применению этого способа микроскопии контраст живых неокрашенных микроорганизмов резко увеличивается и они выглядят темными на светлом фоне (позитивный фазовый контраст) или светлыми на темном фоне (негативный фазовый контраст).
Фазово-контрастная микроскопия применяется также для изучения клеток культуры ткани, наблюдения действия различных вирусов на клетки и т. п. В этих случаях часто применяют биологические микроскопы с обратным расположением оптики - инвертированные микроскопы. У таких микроскопов объективы расположены снизу, а конденсор - сверху.
5. Флуоресценция (люминесценция)
Флуоресцентная (люминесцентная) микроскопия основана на способности некоторых веществ люминесцировать, т. е. светиться при освещении невидимым ультрафиолетовым или синим светом. Цвет люминесценции смещен в более длинноволновую часть спектра по сравнению с возбуждающим ее светом (правило Стокса).
При возбуждении люминесценции синим светом цвет ее может быть от зеленого до красного, если люминесценция возбуждается ультрафиолетовым излучением, то свечение может быть в любой части видимого спектра. Эта особенность люминесценции позволяет, используя специальные светофильтры, поглощающие возбуждающий свет, наблюдать сравнительно слабое люминесцентное свечение.
Устройство флуоресцентного микроскопа и правила работы с ним отличаются от обычного светового микроскопа в основном следующим:
1. Наличие мощного источника света в осветителе, излучающего преимущественно в коротковолновой (ультрафиолетовой, синей) части спектра (ртутно-кварцевая лампа или галогенная кварцевая лампа).
2. Наличие системы светофильтров:
• возбуждающие светофильтры пропускают только ту часть спектра, которая возбуждает люминесценцию;
• теплозащитный светофильтр защищает от перегрева другие светофильтры, препарат и оптику флуоресцентного микроскопа;
• "запирающие" светофильтры расположены между окуляром. Эти светофильтры поглощают возбуждающее излучение и пропускают свет люминесценции от препарата к глазу наблюдателя.
Способ освещения препаратов для возбуждения люминесценции заключается в том, что препарат освещают светом, падающим на него через объектив. Благодаря этому освещенность увеличивается при использовании объектов, имеющих большую числовую апертуру, т. е. тех, которые используются для изучения микроорганизмов.
Важную роль при этом способе освещения играет специальная интерференционная светоделительная пластинка, направляющая свет в объектив. Она представляет собой полупрозрачное зеркало, которое избирательно отражает и направляет в объектив часть спектра, которая возбуждает люминесценцию, а пропускает в окуляр свет люминесценции.
Оптика объективов флуоресцентного микроскопа изготавливается из нелюминесцирующих сортов оптического стекла и склеивается специальным нелюминесцирующим клеем. При работе с объективами масляной иммерсии используется нелюминесцирующее иммерсионное масло.
Поскольку большинство микроорганизмов не обладают собственной люминесценцией существует несколько способов их обработки для наблюдения в флуоресцентном микроскопе. Прежде всего, это флуорохромирование - окрашивание сильно разведенными (до нескольких микрограмм/мл) растворами флуоресцирующих красителей (флуорохромов). Флуоресцентная микроскопия по сравнению с обычной позволяет:
• сочетать цветное изображение и контрастность объектов;
• изучать морфологию живых и мертвых клеток микроорганизмов в питательных средах и тканях животных и растений;
• исследовать клеточные микроструктуры, избирательно поглощающие различные флуорохромы, являющиеся при этом специфическими цитохимическими индикаторами;
• определять функционально-морфологические изменения клеток;
• использовать флуорохромы при иммунологических реакциях и подсчете бактерий в образцах с невысоким их содержанием.
6. Хоффмановский контраст
Хоффмановский контраст (ХК) представляет собой метод косого освещения, повышающий контраст в окрашенных и неокрашенных препаратах за счет образования градиента оптических фаз. ХК пoзвoляeт нaблюдaть тpexмepнoe изoбpaжeниe живыx oбpaзцoв в плacтикoвыx чaшкax c выcoкoй чeткocтью, чтo дaeт pacшиpeнныe вoзмoжнocти для peшeния нaучныx и cпeциaльныx мeдицинcкиx зaдaч. За счет использования бoльшиих paбoчих paccтoяний и выcoких чиcлoвых aпepтуp метод позволяет тoчнo oтcлeживaть движeние в пoлe зpeния, нaпpимep, пpи проведении микроманипуляций.
Дpугиe иccлeдoвaния - тaкиe, кaк элeктpoфизиoлoгия, вспомогательные репродуктивные технологии и ЭКО - тpeбуют нe тoлькo кoндeнcopoв, нo и oбъeктивoв c бoльшим paбoчим paccтoяниeм. При иccлeдoвaнии тoлcтыx oбpaзцoв ХК пoмoгaeт peшить зaдaчу пocлoйнoгo изучeния oбpaзцa путeм выбopa пocлeдoвaтeльнocти фoкaльныx плaнoв. Пpи этoм кaждый вepxний фoкaльный плaн нe нeceт инфopмaции о нижeлeжaщeм плaне.
ХК мoжeт быть пpимeнeн нa микpocкoпe c флуopecцeнтным ocвeтитeлeм. Изучeниe мopфoлoгии c пpимeнeниeм флуopecцeнции или бeз тaкoвoй вoзмoжнo бeз cмeны oбъeктивoв и oбpaзцa. Стоит отметить преимущество Хоффмановского контраста по сравнению с Фазовым контрастом.
Известно, что Фaзoвoму кoнтpacту пpиcущ эффeкт Гaлo - появление светящегося ореола по контуру изображения объекта. B peзультaтe Bы мoжeтe пoтepять вaжную инфopмaцию. XК нe дaeт Гaлo, чтo пoзвoляeт лeгкo oпpeдeлять cвoйcтвa кpaeвыx cтpуктуp, нaпpимep, тoчнo зaмepять углы или расстояния.
7. ДИК (дифференциально-интерференционный контраст)
ДИК (дифференциально-интерференционный контраст) - является прекрасным механизмом для создания контраста в прозрачных препаратах. Микроскопия с ДИК представляет собой интерференционную систему с расщеплением пучка света, при которой контрольный пучок отклоняется на небольшое расстояние, обычно меньшее, чем диаметр дифракционного кружка.
С помощью данного метода получается монохроматическое оттененное изображение, которое отображает градиент оптических путей как высоко-, так и низкопространственных частот, присутствующих в препарате.
Те участки препарата, при прохождении через которые оптические пути удлиняются по отношению к контрольному пучку, выглядят ярче или темнее, тогда как участки, между которыми различия меньше, обладают противоположным контрастом.
Чем круче становится градиент оптических пучков, тем резче контраст изображения
Микроскопия
Зародившись в XVI веке оптические приборы произвели настоящую революцию, как в научной, так и в прикладной сферах биологических наук. Эти инструменты впервые позволили человеку заглянуть в мир микроскопических существ и отдельных клеток, дали возможность изучать биологические объекты чрезвычайно малых размеров и их отдельные элементы. С тех пор методы микроскопии прошли длинную эволюцию, постоянно совершенствуясь и достигая всё большей разрешающей способности. Благодаря этому, методы микроскопии нисколько не потеряли своей актуальности и по сей день, находя самое широкое применение в биологических и медицинских науках, лабораторных и клинических исследованиях, позволяя изучать морфологию и физиологию клеток – строительных блоков всех живых существ. Так же они применяются в исследованиях наноматериалов, при выполнении работ, требующих особой тонкости, таких как микрохирургия. С годами были разработаны различные конструкции микроскопа (прямые, инвертированные, стереоскопические микроскопы), а также большое количество модификаций метода микроскопии, таких как светлопольная, фазово-контрастная, темнопольная, люминесцентная, лазерная конфокальная и мультифотонная микроскопия. Микроскопия является неотъемлемой частью многих исследовательских работ, при этом регулярно появляются новые методы и перспективы для их применения.
2. Spasov A.A., Bugaeva L.I., Bukatin M.V., Kuzubova E.A., Rebrova D.N. The influence of a new antioxidatic preparation on the reproductive function of male-rats // European Journal of Natural History. – 2007. – № 1. – С. 115–116.
3. Stevens A., Yang H., Kovarik L., Yuan X. Compressive Sensing in Microscopy: a Tutorial // Microscopy and Microanalysis, 2016. Т. 22. № . S3. Р. 2084–2085. DOI: 10.1017/S1431927616011260.
4. Снегирева Л.В. Оптические методы исследования в биологии и медицине // Международный журнал экспериментального образования. – 2017. – № 2. – С. 51–52.
5. Феофанов А.В. Cпектральная лазерная сканирующая конфокальная микроскопия в биологических исследованиях // Успехи биологической химии. – 2007. – № 47. – С. 371–410.
Микроскопия – это изучение объектов и элементов чрезвычайно малых размеров. Человеческий глаз имеет предел разрешения и детализации таких объектов, диктуемый его природными свойствами. Для преодоления этого биологического ограничения используются различные приборы-микроскопы. На сегодняшний день, одним из ведущих методов исследования микрообъектов в биологических науках является оптическая (она же световая) микроскопия. Световые микроскопы являются важнейшими инструментами как при проведение некоторых рутинных медицинских анализов, так и в биологических и медико-биологических научных исследованиях. Они незаменимы при изучении морфологических свойств микробиологических объектов, к которым относятся насекомые и их части, многие паразиты, клетки растений и животных, простейшие и бактерии. Возможность изучения топографии, морфологии, ультраструктуры позволило человеку значительно расширить свои знания о микроорганизмах. В медицине, микроскопы позволяют проводить подсчёт клеток крови, анализ биопсий на структуру, морфологию и наличие определённых включений. С применением молекулярно-биологических техник, появилась возможность выявить локализацию отдельных химических веществ.
Сущность оптических методов
Современная световая микроскопия обеспечивает увеличение до 2–3 тысяч раз, что является достаточным для изучения различных форм жизни на клеточном уровне и других биологических объектов [1, 2]. Основными характеристиками любого микроскопа являются разрешающая способность и контраст. Разрешающая способность – минимальное расстояние, на котором находятся две точки, различаемые как раздельные объекты. Контраст –возможность различать объекты и отдельные детали от их фона. Если различие в яркости объекта и фона составляет менее 3 – 4 %, то его невозможно различить, даже если оптика микроскопа теоретически способна разрешить его детали. На контраст влияют как свойства объекта, которые изменяют световой поток по сравнению с фоном, так и способности оптики прибора уловить возникающие различия в свойствах луча. Главным ограничением для возможностей светового микроскопа является волновая природа света, которое не позволяет увидеть объекты, размеры которых сопоставимы с волновой длиной электромагнитного излучения светового диапазона, т.е. меньше 1 микрометра.
Для различных нужд создаются оптические системы различной конструкции [3, 4]:
Прямой микроскоп является наиболее часто встречаемой конструкцией. Такая схема используется чаще всего при изучение прозрачных и полупрозрачных микрообъектов размеров, сопоставимых с клетками. Лабораторные микроскопы особенно широко применяются в различных областях биологии (ботанике, микробиологии, цитологии) и медицины (обычно это микробиологический и гистологический анализ материала).
Инвертированная схема микроскопа отличается от прямой тем, что в ней объективы находятся не над, а под исследуемым предметом. Это позволяет оптимизировать конструкцию инструмента для работы с достаточно большими по своему объему объектами, вроде флаконов для культивирования клеток. В зависимости от назначения и особенностей конструкции, инвертированные микроскопы могут быть биологическими, люминесцентными, металлографическими и др. Подобные приборы широко используются при различных научных и лабораторных исследованиях в микробиологии и медицине.
Стереоскопические или стереомикроскопы имеют в своей конструкции два расположенных под углом объектива, и благодаря этому позволяют получать стереоскопическое изображение исследуемого объекта. Стереомикроскопы обладают существенно большей глубиной резкости, чем обычные, что позволяет использовать их для изучения относительно крупных и выпуклых микрообъектов – таких как части растений, грибов, колонии микроорганизмов. Выделяют два типа конструкции световых микроскопов: схема Грену и оптическая система с общим главным объективом.
Светлопольная микроскопия позволяет исследовать объекты в проходящем свете в светлом поле [2,5]. Данный вид микроскопии предназначен для исследования морфологии, размеров клеток, их взаимного расположения, структурной организации клеток и других особенностей. У светового микроскопа максимальная разрешающая способность составляет 0,2 мкм, что обеспечивает высокоточное увеличение микроскопа до 1500х.
Фазово-контрастная микроскопия (рис. 1) используется для получения высококонтрастных изображений прозрачных образцов, таких как живые клетки, микроорганизмы, тонкие кусочки ткани, литографические узоры, волокна, латексные дисперсии, осколки стекла и субклеточные частицы, включая ядра и другие органеллы. Метод контраста участка использует оптический механизм для того, чтобы перевести мельчайшие изменения в участке в соответствующие изменения в амплитуде, которые можно визуализировать как разницы в контрасте изображения. Одно из главных преимуществ микроскопии контраста участка в том, что живущие клетки можно рассмотреть в их естественном положении, без предварительного убийства. В результате динамика протекающих биологических процессов может наблюдаться и регистрироваться в высоком контрасте, с высокой четкостью мельчайших деталей образца.
Чтобы хорошо визуализировать эти биологические материалы, они должны иметь контраст, вызванный надлежащими показателями преломления, или окраску. Поскольку красители обычно токсичны, для достижения контраста может использоваться темная поляризационная микроскопия [2, 6]. В темнопольной микроскопии конденсатор предназначен для формирования «полого» конуса света (рис. 2). В темной микроскопии объектив находится в темной полости этого конуса, а свет распространяется вокруг объектива, но не входит в зону конуса. Все поле зрения кажется темным, но когда на предметный столик помещается образец, он кажется ярким на темном фоне. Он похож на заднее освещение объекта, который может быть того же цвета, что и фон, на котором он сидит, – чтобы он выделялся. Темнопольная микрокопия позволяет увидеть объекты, величина которых измеряется сотыми долями микрометра, что находится за пределами разрешающей способности обычного светлопольного микроскопа. Однако наблюдение за объектами в темном поле позволяет исследовать только контуры клеток и не дает возможности рассмотреть их внутреннюю структуру.
Лазерная конфокальная микроскопия
Конфокальная микроскопия (рис. 3) обладает такими особенностями, как контролируемая глубина резкости, устранение шумов вне фокуса и возможность сбора последовательных оптических секций из толстых образцов [5]. Конфокальная микроскопия основана на использовании пространственной фильтрации для устранения света вне фокуса и вспышки в образцах, которые толще плоскости фокусировки. Когда флуоресцентные образцы визуализируются с использованием обычного широкополосного оптического микроскопа, вторичная флуоресценция, испускаемая образцом вдали от интересующей области, часто мешает разрешению тех объектов, которые находятся в фокусе. Конфокальный метод визуализации обеспечивает незначительное улучшение как в осевом, так и в поперечном разрешении, но также обладает способностью исключить из изображения вспышку «вторичную флуоресценцию», которая возникает в густых флуоресцентно меченых образцах. Эта особенность вызвала большой рост популярности конфокальных микроскопов. Освещение достигается путем сканирования одного или нескольких фокусированных лучей света, обычно от лазера. Изображения, полученные путем сканирования образца таким образом, называются оптическими сечениями.
Мультифотонная микроскопия схожа с конфокальной и обеспечивает четкие преимущества для трехмерной визуализации [6]. Она хорошо подходит для визуализации живых клеток, особенно в интактных тканях, таких как срезы мозга, эмбрионы, а так же целые органы или небольшие организмы. Эффективная чувствительность флуоресцентной микроскопии, особенно при работе с толстыми образцами, как правило, ограничена вспышкой без фокуса. Это ограничение значительно сокращается в конфокальном микроскопе, с помощью конфокального отверстия для отклонения фоновой флуоресценции фокуса и получения несжатых оптических секций менее 1 микрометра. Мультифотонная микроскопия имеет преимущества: 1. Вследствие значительно меньшего поглощения тканей и клеток в ИК – области по сравнению с УФ, уменьшается повреждение живых клеток фотоиндуцированными процессами. 2. Достигается большая глубина проникновения излучения в биологические объекты. 3. Отсутствует возбуждение и выцветание флуорохромов вне фокального микрообъема, поэтому конфокальная диафрагма не требуется.
Эпоха, когда оптическая микроскопия была чисто описательным инструментом прошла. В настоящее время формирование оптического изображения является лишь первым шагом к анализу данных. Микроскоп выполняет этот первый шаг в сочетании с электронными детекторами, процессорами изображений и устройствами отображения, которые можно рассматривать как расширения системы формирования изображения. Компьютеризированное управление фокусом, сценическим положением, оптическими компонентами, ставнями, фильтрами и детекторами широко распространено и позволяет проводить экспериментальные манипуляции, которые невозможны для человека при использовании механических микроскопов. Возрастающее применение электрооптики в флуоресцентной микроскопии привело к созданию оптических пинцетов, способных манипулировать субклеточными структурами или частицами, изображениями отдельных молекул и широким спектром сложных спектроскопических приложений.
Метод изучения – микроскопия на практике
Микроскопия – это изучение объектов при помощи микроскопа. Причем разными методами. Каждый из них подходит для исследования определенных видов образцов и не может использоваться для изучения сразу всех микроструктур. Профессиональный ученый умеет применять на практике все основные методы микроскопии и знает, какой микроскоп обеспечит наибольшую эффективность в исследованиях. Эта статья не сделает вас специалистом в микроскопии, но поможет лучше ориентироваться в применяемых методах.
Современные методы микроскопии
Методы исследования микрообразцов можно разделить на световые и электронные. Они, в свою очередь, подразделяются на подметоды. Давайте познакомимся с этой классификацией поближе.
Световая микроскопия использует следующие методы: светлого поля, темного поля, фазового контраста, интерференционного контраста, поляризационную микроскопию, метод исследования в свете люминесценции, метод наблюдения в инфракрасных или ультрафиолетовых лучах. Отдельно можно выделить микрофотографирование и микрокиносъемку.
К электронным методам относят просвечивающую (трансмиссионную) и сканирующую (растровую) микроскопию.
Все довольно несложно, но что кроется за этой терминологией?
Метод светлого поля – наиболее широко применяемый. При использовании проходящего света он позволяет изучать разные прозрачные образцы, например тонкие шлифы минералов, окрашенные срезы тканей животных и растений. Иногда для изучения таких образцов применяется косое освещение – оно дает более рельефное изображение. Метод светлого поля в отраженном свете нужен для исследования непрозрачных материалов, например металлов и руд.
Метод темного поля используют для изучения живых неокрашенных клеток, которые нельзя увидеть при светлопольном методе изучения (микроскопии). Он требует применения специальных темнопольных микроскопов, на которые установлены конденсоры особой конструкции.
Микроскопия в поляризационном свете – это возможность изучать минералы, шлифы сплавов и многое другое. Этот метод чаще всего используется для исследования кристаллических структур, так как он позволяет регистрировать двойное преломление лучей света, что невозможно наблюдать обычным способом. В поляризационной микроскопии тоже используются особые микроскопы – поляризационные.
К современным методам микроскопии относится и метод фазового контраста. Он нужен для наблюдения прозрачных и бесцветных объектов, в том числе и живых. К ним относятся, например, неокрашенные животные ткани, которые не видны при использовании светлопольной микроскопии. В фазово-контрастной микроскопии применяются специальные микроскопы, которые позволяют регистрировать фазовые изменения световой волны в момент ее прохождения через разные структуры рассматриваемого образца.
Флуоресцентная (люминесцентная) микроскопия основана на получении изображения образца путем приведения его атомов и молекул в возбужденное состояние. Образец облучается высокочастотным светом, что приводит к высвобождению излучения, которое пропускается через фильтр и наблюдается в оптическом диапазоне. Для наблюдений используются специальные флуоресцентные микроскопы.
К сожалению, в рамках одной небольшой статьи невозможно подробно рассмотреть все методы микроскопии для исследования материалов и микропрепаратов. Все полезные статьи на тему микроскопии вы можете найти по ссылке. Микроскопы для исследований представлены в этом разделе. Если вас интересует конкретная модель или вы не можете определиться с выбором, звоните или пишите – мы поможем!
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Читайте также: