Обмен железа. Физиология микроэлементов

Добавил пользователь Alex
Обновлено: 21.12.2024

Минеральный состав внутриклеточной жидкости строго поддерживается на определенном уровне.

Элементы вместе с водой являются строительным материалами, кофакторами и катализаторами биохимических реакций, стабилизаторами белков и ферментов, обеспечивая постоянство осмотического давления, кислотно-щелочного баланса, процессов всасывания, секреции, кроветворения, костеобразования, свертывания крови. Благодаря присутствию элементов осуществляется процесс мышечного сокращения, нервной проводимости и внутриклеточного дыхания. Химические элементы в организме находятся в виде различных соединений и солей, их влияние на организма обусловлено дозой элемента. Для каждого элемента существует свой физиологический рабочий диапазон концентраций, обеспечивающий нормальное протекание физиологических реакций в организме.

Нарушенная экология, возросший темп жизни с неизбежным нарастанием стрессовых ситуаций, методы обработки продуктов питания, «убивающие» биологически активные вещества ведут к нарушению металло-лигандного гомеостаза и сдвигу равновесия в сторону увеличения или уменьшения концентрации элемента. Накопление элементов или их дефицит способствует активации альтернативных путей метаболизма, который в ряде случаев приводят к патологическим состояниям.

Химические элементы классифицируются в зависимости от их роли в организме. 98% тела человека состоит из органических элементов: H, C, N, O. Вместе с неорганическими элементами Na, Mg, K, Ca, P, S, Cl они составляют основу клеток и тканей, выполняя структурообразующую функцию. К эссенциальным или жизненно необходимым микроэлементам относятся Mn, Fe, Co, Ni, Cu, Zn, Mo, Se, I, при их отсутствии нарушаются базовые реакции деления и размножение клеток. К условно-эссенциальным микроэлементам относятся Li, V, Cr, B, F, Si, As, их роль до конца не определена. Существуют также «токсические металлы», которые в минимальных концентрациях способны оказывать стимулирующее воздействие на организм, но в высоких концентрациях проявляют токсические эффекты.

Микроэлементы составляют лишь 0,02% организма, но способны изменять протекание важнейших биологических реакций. Анализ волос или мочи позволяет выявить избыточное накопление микроэлементов или их дефицит. Содержание микроэлементов в волосах отражает микроэлементный статус организма в целом, поэтому пробы волос являются интегральным показателем минерального обмена. Волосы помогают диагностировать хронические заболевания, когда они себя еще ничем не проявляют.

Железо (Fe)

Железо является жизненно необходимым элементом для организма. Железо входит в состав гемсодержащих белков (гемоглобин и миоглобин) и участвует в переносе кислорода. Железо также входит в состав цитохромов (сложные белки, относящиеся к классу хромопротеидов), участвующих в процессах тканевого дыхания.

Общее содержание железа в организме человека составляет 3-5 г. Из этого количества 57% находится в гемоглобине крови, 23% — в тканях и тканевых ферментах (ферритин и гемосидерин), а остальные 20% — депонированы в печени, селезенке, костном мозге, мышцах и представляют собой "физиологический резерв" железа. Железо существует в двух формах: окисленной (Fe3+) и воcстановленной (Fe2+). Восстановленная форма лучше усваивается организмом. Только 10 % поступившего железо всасывается в кишечнике.

  • мужчины: 8–10 мг/сут;
  • женщины: 15–20 мг/сут;
  • беременных женщины: 30–40 мг/сут;
  • дети: 4–18 мг/сут.

Недостаток железа приводит к тяжелым расстройствам, наиболее важным из которых является железодефицитная анемия. Железодефицитная анемия может привести к сердечной недостаточности.

Избыточное накопление железа приводит к отложению металла в органах (печень, поджелудочная железа, суставы, сердце). Явления отравления железом выражаются рвотой, диареей, падением артериального давления, параличом ЦНС и воспалением почек. При лечении железом могут развиться запоры, так как железо связывает сероводород, что ослабляет моторику кишечника. Избыток железа в организме может привести к дефициту меди, цинка, хрома и кальция, а также к избытку кобальта.

Йод (I)

Йод необходим на всех этапах жизнедеятельности. Период младенчества и раннего детства являются критическими в отношении дефицита йода. Йод входит в состав гормонов щитовидной железы тироксина (T4) и трийодтиронина (T3). Йод необходим для роста и дифференцировки клеток всех тканей организма человека, внутриклеточного дыхания, регуляции трансмембранного транспорта натрия и гормонов.

Общее количество йода в организме составляет 25 мг, из них 15 мг аккумулирует щитовидная железа. Значительное количество йода содержится в печени, почках, коже, волосах, ногтях, яичниках и предстательной железе.

  • взрослые: 100–150 мкг/сут;
  • беременные: 175–200 мкг/сут;
  • дети: от 60 до 150 мкг/сут.

При недостаточном поступлении йода у взрослых увеличиваются размеры щитовидной железы, замедляется основной обмен, наблюдается падение артериального давления. У детей недостаток йода сопровождается резкими изменениями всей структуры тела: ребенок отстает в умственном и физическом развитии.

Избыток йода в организме наблюдается при гипертиреозе. Развивается Базедова болезнь, сопровождающаяся экзофтальмом, тахикардией, раздражительностью, мышечной слабостью, потливостью, исхуданием, склонностью к диарее. Повышение основного обмена ведет к гипертермии, дистрофическим изменениям кожи и ее придатков, раннему поседению, депигментации кожи на ограниченных участках (витилиго), атрофии мышц.

Марганец (Mn)

Важен для репродуктивных функций и нормальной работы центральной нервной системы. Марганец участвует в синтезе нейромедиаторов, улучшает мышечные рефлексы, обеспечивает развитие соединительной и костной ткани, увеличивает утилизацию жиров, усиливает эффекты инсулина.

3–5 % поступившего марганца всасывается. Наиболее богаты марганцем трубчатые кости и печень, поджелудочная железа. Марганец содержится в клетках, богатых митохондриями.

  • взрослые: 2–5 мг/сут;
  • для детей в 2 раза выше.

При недостатке марганца нарушаются процессы окостенения во всем скелете, трубчатые кости утолщаются и укорачиваются, суставы деформируются. Нарушается репродуктивная функция яичников и яичек.

Избыток марганца усиливает дефицит магния и меди.

Медь (Cu)

Медь принимает участие в поддержание эластичности связок, сухожилий, кожи и стенок легочных альвеол, стенок капилляров, а также прочности костей. Медь входит в состав защитных оболочек нервных волокон, участвует в процессах пигментации, так как входит в состав меланина. Медь влияет на углеводный обмен, посредством усиления процессов окисления глюкозы и торможения распада гликогена мышц и печени. Медь обладает противовоспалительными действиями, помогает при борьбе с бактериальными агентами. Медь является кофактором ферментов антиоксидантной защиты и помогает нейтрализовать действие свободных радикалов.

Общее содержание меди в организме человека составляет примерно 100–150 мг. Лучше всего организм усваивает двухвалентную медь. В тонком кишечнике всасывается до 95% меди, поступившей с пищей. Основное "депо" меди в организме — печень, поскольку синтезирует белок-переносчик меди церулоплазмин.

  • взрослые: 1 мг/сут;
  • дети: от 0,5 до 1 мг/сут.

При недостатке меди в организме наблюдаются: задержка роста, анемия, дерматозы, депигментация волос, частичное облысение, потеря аппетита, сильное исхудание, понижение уровня гемоглобина, атрофия сердечной мышцы. Избыток меди приводит к дефициту цинка и мoлибдена, а также марганца.

Молибден (Мо)

Способствует метаболизму углеводов и жиров, является важной частью фермента, отвечающего за утилизацию железа, в связи с чем помогает предупредить анемию. Принимает участие в обмене мочевой кислоты, включении фтора в состав эмали зубов, гемопоэзе.

Биодоступность молибдена составляет 50%. Молибден не депонируется в организме, а распределяется между клетками крови.

  • взрослые: 45–100 мкг/сут;
  • дети: от 0,5 до 1 мг/сут.

Селен (Sе)

Элемент антиоксидантной защиты, хорошо сочетается с витамином Е. Селен помогает поддерживать должную эластичность тканей. Селен усиливает иммунитет, поэтому активно используется в онкологической практике, в лечении гепатитов, панкреатитов, кардиомиопатий. Селен защищает организм от тяжёлых металлов.

Всасывается в тонком кишечнике, депонируется в почках, печени, костном мозге.

  • женщины: 50 мкг/сут;
  • беременные: 65 мкг/сут;
  • мужчины: 70 мкг/сут;
  • дети: 10-50 мкг/сут.

При дефиците селена в организме усиленно накапливаются мышьяк и кадмий, которые, в свою очередь, еще больше усугубляют его дефицит.

Избыток селена приводит к гепато- и холецистопатиям, изменениям работы нервно-мышечного аппарата (боли в конечностях, судороги, чувство онемения). Избыток может привести к дефициту кальция.

Цинк (Zn)

Цинк входит в состав более 300 ферментов, чем объясняет его влияние на углеводный, жировой и белковый обмен веществ, на окислительно-восстановительные процессы, регуляцию активности генов. Цинк связан с правильным функционированием репродуктивной, неврологической, иммунной систем, ЖКТ и кожи. Присутствие микроэлемента важно для нормального сперматогенеза, органогенеза, работы нейромедиаторов и панкреатических ферментов, правильного развития тимуса, эпителизации ран в процессе заживления и ощущения вкуса.

В организме содержится около 1,5–3 г цинка. Цинк всасывается в тонком кишечнике. Медь является антагонистом цинка, и конкурирует с цинком за всасывание в кишечнике. 99% цинка находится внутриклеточно, 1% — в плазме. Цинк присутствует во всех органах и тканях, но в большей степени цинк депонируют предстательная железа, семенники, мышцы, кожа, волосы.

Физиологическая потребность в цинке составляет: 12 мг/сут для взрослых, 3–2 мг/сут для детей.

Наиболее богаты цинком дрожжи, пшеничные, рисовые и ржаные отруби, зерна злаков и бобовых, какао, морепродукты, грибы, лук, картофель.

При дефиците цинка наблюдается задержка роста, перевозбуждение нервной системы и быстрое утомление. Поражение кожи происходит с утолщением эпидермиса, отеком кожи, слизистых оболочек рта и пищевода, ослаблением и выпадением волос. Недостаточное поступление цинка приводит к бесплодию. Дефицит цинка может приводить к усиленному накоплению железа, меди, кадмия, свинца.

При цинковом отравлении наступает фиброзное перерождение поджелудочной железы. Избыток цинка задерживает рост и нарушает минерализацию костей.

Кобальт (Co)

В организме 1,5 г кобальта. Биодоступность кобальта 20%. В организм кобальт депонируется в печени, костной ткани и мышцах.

Физиологическая потребность в кобальте составляет: 10 мкг/сут для взрослых.

Кобальт содержится в печени, молоке, овощах.

Дефицит кобальта связан с В12-дефицитной анемией, вегетарианством или паразитарной инвазией. Избыток кобальта наблюдается при интоксикации кобальта (вредное производство, разрушение ортопедических имплантантов).

Никель (Ni)

Никель пролонгирует эффекты инсулина, участвует в окислении аскорбиновой кислоты, ускоряет образование дисульфидных групп.

Никель всасывается в кишечнике, биодоступность от 1 до 10 %. Запасы никеля находятся в поджелудочной железе, легких, сердце.

Физиологическая потребность в никеле составляет: 100–200 мкг/сут для взрослых.

Богаты никелем чай, гречиха, морковь и салат.

Дефицит никеля не описан. Избыток никеля наблюдается при его токсическом поступлении, злокачественных новообразованиях легких, ожогах, инсультах и инфарктах. Избыток может проявлять потерей пигментацией кожи.

Обмен железа. Физиология микроэлементов

Связывание гемоглобина с кислородом. Обмен железа

Наиболее важным свойством гемоглобиновой молекулы является ее способность свободно и обратимо связываться с кислородом. Эта способность детально изложена в отдельной статье на сайте в связи с дыханием (просим вас пользоваться формой поиска выше), поскольку главной функцией гемоглобина в организме является соединение его с кислородом в легких и затем освобождение этого кислорода в тканевых капиллярах, где парциальное давление кислорода гораздо ниже, чем в легких.

Кислород не соединяется с двумя положительными связями железа гемоглобиновой молекулы. Вместо этого он связывается с так называемыми координационными связями атома железа. Это чрезвычайно свободная связь, поэтому соединение легко обратимо. Более того, кислород не переходит в ионную форму и переносится в виде молекулярного кислорода (составленного из двух атомов кислорода) к тканям, где легко освобождается в тканевые жидкости в форме молекулярного кислорода, а не иона кислорода.

Обмен железа (метаболизм железа)

Поскольку железо необходимо для формирования не только гемоглобина, но и других жизненно важных элементов организма (например, миоглобина, цитохромов, цитохромоксидазы, пероксидазы, катализы), важно понять способы утилизации железа в организме. Общее количество железа в теле человека в среднем составляет 4-5 г, причем около 65% этого количества входит в состав гемоглобина. Примерно 4% железа входит в состав миоглобина, 1% находится в составе различных гем-соединений, способствующих внутриклеточному окислению, 0,1% связан с белком трансферрином в плазме крови и 15-30% накапливаются для последующего использования в основном в ретикулоэндотелиальной системе и клетках паренхимы печени главным образом в форме ферритина.

Образование эритроцитов. Формирование красных клеток крови

Транспорт и метаболизм железа

а) Транспорт и накопление железа. Транспорт, накопление и метаболизм железа в организме схематически представлены на рисунке выше. После всасывания из тонкого кишечника железо немедленно связывается в плазме крови с бета-глобулином (апотрансферрином), формируя трансферрин, который затем транспортируется в плазме. Железо в трансферрине связано свободно и, следовательно, может высвобождаться в любую тканевую клетку в любой точке тела. Избыток железа в крови откладывается в основном в гепатоцитах и в меньшей степени — в ретикулоэндотелиальных клетках костного мозга.

В цитоплазме клеток железо связывается главным образом с белком апоферритином, формируя ферритин. Молекулярная масса апоферритина — около 460000, и с этой большой молекулой может соединяться в кластеры радикалов железа разное количество железа; следовательно, ферритин может содержать как большое, так и небольшое количество железа. Железо, которое накапливается в виде ферритина, называют резервным железом.

Меньшая часть этого резерва хранится в совершенно нерастворимой форме, называемой гемосидерином. Он в основном формируется, когда общее количество железа в теле больше, чем может связать апоферритин. Гемосидерин собирается в клетках в виде больших кластеров, которые видны под микроскопом, как большие частицы. Наоборот, частицы ферритина так малы и рассеяны, что их можно обычно увидеть в цитоплазме клеток только с помощью электронного микроскопа.

Когда уровень железа в плазме падает до низких значений, некоторое его количество из запаса в форме ферритина легко выделяется в плазму и транспортируется в виде трансферрина к нуждающимся в железе областям. Уникальной особенностью молекулы трансферрина является то, что она прочно связывается с рецепторами клеточной мембраны эритробластов в костном мозге. Затем вместе со связанным железом молекула поглощается эритробластом путем эндоцитоза. Внутри клетки трансферрин освобождает железо прямо в митохондрии, где синтезируется гем.

При отсутствии адекватного количества трансферрина в крови людей недостаточность транспорта железа к эритробластам может вызвать тяжелую гипохромную анемию, которая характеризуется наличием красных клеток крови, содержащих гораздо меньше гемоглобина, чем в норме.

Когда эритроциты завершают свой жизненный путь и разрушаются, гемоглобин, выделившийся из клеток, поглощается моноцитарно-макрофагальными клетками. Железо при этом освобождается и накапливается преимущественно в виде ферритина, чтобы использовать ся, когда необходимо, для формирования нового гемоглобина.

б) Ежедневная потеря железа. Мужчина выделяет примерно 0,6 мг железа ежедневно, главным образом с фекалиями. Дополнительное количество железа теряется при кровотечении. У женщин дополнительная менструальная потеря крови дает долговременную потерю железа в среднем примерно до 1,3 мг/сут.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

а) Железо. Функции железа в организме, особенно в связи с образованием гемоглобина, обсуждались в отдельной статье на сайте (просим вас пользоваться формой поиска выше). Две трети количества железа, присутствующего в организме, представлены в форме гемоглобина, хотя небольшое количество может присутствовать и в другой форме, особенно в печени и костном мозге. Переносчики электронов, содержащие железо (особенно цитохромы), находятся в митохондриях всех клеток организма и нужны для процессов окисления в клетках, поэтому железо абсолютно необходимо как для транспорта кислорода тканей, так и для систем окисления в клетках тканей, при отсутствии которых жизнь прекращается в течение нескольких секунд.

Схема обмена железа

Схема обмена железа (Fe) в организме здорового мужчины

б) Важные микроэлементы организма. Некоторые вещества присутствуют в организме в столь малых количествах, что их называют микроэлементами. Количество этих веществ в пище также чрезвычайно мало, но при отсутствии этих веществ развиваются специфические нарушения. К числу наиболее важных микроэлементов относят йод, цинк и фтор.

в) Йод. Наиболее хорошо изученным микроэлементом является йод. Содержание йода в организме в среднем составляет всего 14 мг. Йод необходим для образования тироксина и трийодтиронина — двух важнейших гормонов щитовидной железы, необходимых для поддержания нормальной скорости метаболических процессов в клетках организма.

Физиология обмена магния, кальция, фосфора

г) Цинк. Цинк является общим компонентом многих ферментов, наиболее важным из которых можно считать карбоангидразу, присутствующую в наиболее высокой концентрации в красных клетках крови. Этот фермент ответствен за быстрое связывание углекислого газа с водой в эритроцитах капилляров тканей и быстрое высвобождение углекислого газа в капиллярах легких. Карбоангидраза также присутствует в слизистой желудочно-кишечного тракта, канальцах почек и эпителиоцитах многих желез. Следовательно, цинк в небольших количествах необходим для осуществления многих реакций, связанных с обменом углекислого газа.

Кроме того, цинк является компонентом такого фермента, как лактатдегидрогеназа, и поэтому нужен для реакций превращения пировиноградной и молочной кислот. Наряду с этим цинк является компонентом некоторых пептидаз и, следовательно, важен для процессов переваривания белка в желудочно-кишечном тракте.

е) Фтор. Возможно, что фтор не является важным элементом для обмена веществ, но присутствие небольшого количества фтора в организме во время периода формирования зубов является средством, предупреждающим развитие кариеса. Фтор не делает зубы прочнее, но обладает малопонятным противокариозным действием. Предполагается, что фтор размещается в кристаллах гидроксиапатита в эмали зубов и объединяется с ними, блокируя в такой форме действие редких металлов, необходимых для активации ферментов бактерий, вызывающих кариес. В присутствии фтора ферменты остаются неактивными и кариес не развивается.

Избыток фтора вызывает флюароз, что в легких случаях проявляется пятнистостью зубов, а при резкой выраженности — разрастанием костей. Предполагают, что в этих случаях фтор взаимодействует с редкими металлами в некоторых ферментах, участвующих в обменных процессах, например фосфатазе, что приводит к инактивации различных метаболических систем. Согласно этой гипотезе, пятнистость на зубах, как и разрастание костной ткани, являются следствием нарушения ферментных систем одонтобластов и остеобластов. Несмотря на то, что развитие пятнистости зубов при флюорозе делает их высокоустойчивыми к развитию кариеса, сама прочность структуры тканей зубов значительно снижается.

Физиология обмена железа и его эффекты

Назначение железа как доношенным, так и недоношенным детям является одним из наиболее противоречивых вопросов. Дефицит железа широко распространен, он оказывает долгосрочное влияние на развитие нервной системы и поведенческие функции, нарушение которых может быть необратимым процессом. В то же время известно, что избыток железа токсичен.

Граница между терапевтической и токсической дозами железа весьма условна. Вопросы, которые вызывают противоречивые мнения, касаются адекватных лабораторных методов для оценки содержания железа в организме; времени начала дополнительного введения железа и безопасности такого вмешательства у недоношенных детей с учетом возможного побочного действия избыточного количества железа; времени начала дополнительного введения железа детям, находящимся исключительно на грудном вскармливании.

Железо — важнейший нутриент, участвующий в биологических процессах, включающих репликацию ДНК, экспрессию генов, клеточное дыхание (в т.ч. образование АТФ), а также в транспорте и усвоении кислорода. Железо нужно для эритропоэза (образования гемоглобина). Кроме того, оно является неотъемлемым компонентом многих ферментов, необходимых для развития головного мозга и чрезвычайно важных для работы мышц сердца и скелетных мышц (в частности, миоглобина).

Подобно кальцию и многим другим минералам, 80% железа, имеющегося в организме доношенного ребенка, накапливается плодом на сроке гестации между 24 и 40 нед со скоростью 1,6—2 мг/кг/сут. Общее содержание железа к моменту рождения составляет 75 мг/кг независимо от размеров ребенка; 75% железа находится в эритроцитах, 15% — в печени.

Железо может усваиваться организмом как в органической, так и в неорганической форме. Органическая форма в виде ферритина или гемопротеинов отличается высокой биодоступностью и содержится в печени и «красных» мышцах. Для новорожденных детей, диета которых не содержит мяса, эти продукты не могут служить источником железа. Неорганическую форму железа (или двухвалентное железо) часто используют в виде добавки к пище.

Она может быть подвержена хелированию и преципитации при взаимодействии с другими компонентами пищи, что снижает ее биодоступность. В частности, так действуют фитаты, фосфаты, таннаты, оксалаты и карбонаты. Как показали исследования с применением стабильных изотопов железа, количество неорганического железа, которое всасывается у недоношенных детей, составляет 34—42%. Это превышает количество железа (7-12%), поступающего в организм доношенного ребенка.

Схема обмена железа в организме взрослого человека

Схема обмена железа в организме взрослого человека

К факторам, усиливающим абсорбцию у недоношенных детей, относят постнатальный возраст, дефицит железа, введение железа (в т.ч. в составе сертифицированных смесей) между приемами пищи, нормальное содержание витамина С в организме. К факторам, уменьшающим абсорбцию железа, относят искусственное вскармливание (такие дети чаще имеют дефицит железа по сравнению с получающими грудное молоко) и гемотрансфузии. Гестационный возраст, постконцептуальный возраст и терапия эритропоэтином оказывают минимальный эффект на усвоение организмом железа.

Всасывание железа у взрослых происходит на апикальной поверхности энтероцитов двенадцатиперстной кишки. Органическое (или гемовое) железо транспортируется в энтероцит через недавно открытый белок-переносчик гема 1. Дальнейший путь железа после проникновения его в энтероцит до конца не изучен, хотя известно, что фермент гемоксигеназа, который высвобождает железо из протопорфиринового кольца, находится в микросомальной части энтероцита.

Гораздо больше известно о всасывании негемового железа. Один из путей заключается в превращении трехвалентного железа в двухвалентное на щеточной кайме энтероцитов при участии фермента дуоденальной редуктазы трехвалентного железа. Затем транспортер бивалентных металлов 1 переносит редуцированную форму железа через апикальную мембрану.

Когда железо попадает в энтероцит, оно может накапливаться в виде ферритина для дальнейшего использования или утрачивается при «слущивании» стареющего энтероцита. Внутриклеточное негемовое железо может быть транспортировано в кровь через базолатеральную мембрану с помощью транспортера негемового железа ферропор-тина, который является важнейшим экспортером внутриклеточного железа. Ферропортин расположен на базолатеральной поверхности энтероцитов, гепатоцитов и макрофагов.

После попадания в кровь железо соединяется с трансферрином и переносится к месту использования или накопления. Предшественники эритроцитов имеют большое количество рецепторов трансферрина 1 (TfR1), что позволяет им иметь преимущества в захвате циркулирующего железа. Стареющие эритроциты поглощаются макрофагами. Макрофаги экспортируют восстановленное железо с помощью ферропортина (того же переносчика, который содержится в дуоденальных энтероцитах). Железо накапливается в печени, которая захватывает его из портальной системы с помощью TfR1.

Суточная потребность организма в железе

Суточная потребность организма в железе

Организм человека обладает способностью распределять доступное железо между органами, исходя из приоритетной потребности в нем. При дефиците железа в первую очередь расходуются его запасы в печени, затем — в скелетных мышцах и кишечнике. При выраженном дефиците железа сначала истощаются его запасы в сердечной мышце, затем — в головном мозге и, наконец, в эритроцитах. Железодефицитная анемия является тяжелой формой дефицита железа.

Эритроциты имеют большую потребность в железе даже по сравнению с головным мозгом, несмотря на возможные отрицательные неврологические последствия для ребенка, обусловленные дефицитом железа в мозговой ткани. Железо играет важную роль в процессах пролиферации нейронов, миелинизации, метаболизма энергии, нейротрансмиссии и работе различных ферментов в ЦНС. Существует система приоритетов по распределению и расходованию железа в пределах одного органа, что было показано в экспериментах на головном мозге новорожденных детенышей крысы. Наиболее чувствительными к дефициту железа в перинатальном периоде оказались гиппокамп и зона коры головного мозга.

Эритроциты являются приоритетным местом использования железа в организме, очевидна их исключительная функция в транспортировке кислорода в организме. Кислород обратимо присоединяется к гемоглобину в условиях высокого парциального давления кислорода в легких и высвобождается из этой связи при относительно низком парциальном давлении кислорода в тканях. На аффинность кислорода влияет ряд факторов, в т.ч. концентрация 2,3-дифосфоглицерата и рН.

Для осуществления обратимой связи кислорода с гемоглобином железо гемовой части должно находиться в двухвалентной форме. В эритроцитах существует специальный механизм для поддержания железа в редуцированной двухвалентной форме, однако в условиях действия лекарств, обладающих окислительной активностью, или токсинов, а также при генетических нарушениях в эритроцитах или аномалиях самого гемоглобина данные защитные механизмы не работают и гемоглобин не выполняет свою функцию. Высвобождение кислорода в мышцах частично зависит от концентрации миоглобина в тканях. Так же, как и в случае с гемоглобином, дефицит железа тормозит синтез миоглобина.
Низкое содержание миоглобина в мышцах, подобно низкой концентрации гемоглобина в крови, ухудшает высвобождение кислорода.

Обмен железа в организме

Железо является жизненно важным микроэлементом. Железо входит в состав гемоглобина эритроцитов (красных кровяных телец) и переносит кислород от легких к тканям. Железо необходимо каждой клетке организма, поскольку способствует процессу ее дыхания. Железо входит в состав ферментов, обеспечивая нормальную их работу и протекание метаболических реакций.

Потребности в железе

Взрослым мужчинам и женщинам требуется только 8 мг /день. Женщины детородного возраста нуждаются в дозе 18 мг/сут, во время беременности потребность возрастает до 27 мг/сут.

Всасывание железа

Железо бывает двух видов: гемовое и негемовое. Гемовое железо содержится только в мясе, птице, рыбе и моллюсках. Негемовое железо содержится в растительных источниках, которые включают сушеную чечевицу, фасоль и горох; изделия из цельнозерновой муки; листовые зеленые овощи; сухофрукты; орехи и семена. Организм усваивает гемовое железо лучше чем негемовое, поэтому у вегетарианцев и тех, кто отказывается от мясной и животной пищи потребность в железе выше и составляет 32 мг/сут.

Необходимо включать богатые железом продукты в каждый прием пищи. Употребляя в пищу продукты с высоким содержанием витамина С, такие, как апельсины, клубника, помидоры, брокколи, цветная капуста, киви и цитрусовые соки — можно увеличить потребление железа. Такой же эффект дает использование посуды из чугуна или нержавеющей стали, железо может проникать из них в приготовленную пищу. Кофе и черный чай тормозят всасывание железа, поэтому лучше отложить их прием хотя бы на час от основного приема пищи.

Если организм не получает достаточного количества микроэлемента может развиться дефицит железа, который в легкой форме проявляется истощением запасов железа, в тяжелой форме — железодефицитной анемией.

Признаки железодефицитной анемии

  • чувство усталости и слабости;
  • снижение познавательной способности;
  • затруднение поддержания температуры тела;
  • снижение иммунной функции;
  • восприимчивость к инфекции.

На ранних стадиях дефицита железа может не иметь никаких симптомов, поэтому важно проводить лабораторный скрининг, особенно в группах риска. В группу риска входят девочки-подростки, беременные женщины, вегетарианцы и маленькие дети.

Лабораторные показатели обмена железа

Трансферрин — это транспортный белок, который осуществляет перенос железа. Трансферрин транспортирует железо, всосавшееся в клетках кишечника, и железо разрушенных эритроцитов для повторного использования. В норме трансферрин насыщается железом только на 33%. При истощении запасов железа, синтез трансферрина активируется, а при увеличении — падает.

Ферритин — основная форма депонирования железа. Клетки печени, костного мозга, тонкого кишечника синтезируют ферритин, который связывает и хранит железо в нетоксичной для организма форме. В первую очередь при возрастающей потребности в железе, железо расходуется из тканей. На начальной стадии дефицита железа (прелатентной) необходимо оценивать уровень ферритина.

ОЖСС — общая железосвязывающая способность сыворотки. Это исследование позволяет определить степень так называемого Fe-голодания сыворотки крови. Второй показатель, после ферритина, который позволяет заподозрить дефицит железа.

Уровень гемоглобина оценивают совместно с уровнем железа сыворотки. Совместная интерпретация обоих результатов помогает провести дифференциальную диагностику анемий.

Все вышеперечисленные анализы необходимо сдавать натощак или спустя 6–8 часов после последнего приема пищи. Накануне сдачи крови желательно избегать чрезмерных физических и эмоциональных нагрузок, прием алкоголя.

Читайте также: