Вариабельность в нервной системе
Мы уже говорили, что существует поразительное несоответствие между относительно небольшим количеством генов в клеточном ядре и колоссальным разнообразием клеточных элементов в нервной системе. В гистологических исследованиях мозга человека, наряду со сходством основных принципов клеточного строения (видоспецифических особенностей), наблюдается значительная межиндивидуальная вариабельность.
Можем ли мы сравнить морфологическое строение нервных клеток у близнецов? Чтобы сделать это, необходимо в коре мозга каждого из них отыскать идентичные по своему происхождению клетки и сравнить их фенотипы, то есть детали строения - форму тела, характер отростков, количество синапсов и т.д. Понятно, что такая процедура практически неосуществима для человека, но можно попытаться проделать это для клонов других живых организмов. Ж.-П. Шанже в своей книге (Changeux J.-P., 1997) приводит несколько примеров, в которых сопоставляются особенности строения нейронов-близнецов. Например, удобно проделать это для водяной блохи дафнии (Daphnia magna), которая может размножаться партеногенетически (без участия самца) и дает клоны организмов, генетически идентичных материнскому. Нервная система дафний примитивна, каждый нейрон может быть идентифицирован.
Оказалось, что у клонов этих животных не наблюдается вариабельности в количестве нервных клеток. Например, глаз составлен ровно из 176 сенсорных нейронов. Эти 176 нейронов образуют контакты со 110 клетками оптического ганглия. Здесь также нет никаких вариаций. Каждый сенсорный нейрон, взятый в отдельности, контактирует с одними и теми же нейронами оптического ганглия. Эта инвариантность, очевидно, обеспечивается генетически. Однако наряду с инвариантностью имеется и определенная вариабельность: она касается количества синапсов и формы ветвления аксонов. Например, число синапсов одних и тех же нейронов у отдельных особей может варьировать от 24 до 65. Определенная вариабельность характерна также для симметричных нейронов правой и левой стороны тела, но она значительно меньше вариабельности между особями (рис. 9.11).
Подобные наблюдения, сделанные для гигантских нейронов рыб, также способных давать изогенетические клоны, дают сходные результаты: межиндивидуальная вариабельность у генетически идентичных особей наблюдается лишь в мелких деталях строения нейронов.
Можно ли проделать подобные процедуры у млекопитающих? К сожалению, на этот вопрос придется пока дать отрицательный ответ. Во-первых, возникают затруднения с получением клонов животных в строгом смысле этого слова. Можно, конечно, воспользоваться инбредными линиями и сопоставлять животных с почти идентичными генотипами. Однако возникает второе затруднение - это идентификация одних и тех же нейронов внутри определенных категорий. Число нейронов здесь во много раз больше, чем у простых организмов, и оно не является строго фиксированным. Кроме того, нейроны в процессе развития не занимают столь регулярного и воспроизводимого в ряду поколений положения, как у примитивных дафний. Опыты с химерными мышами показывают, что деление и миграция нервных клеток у млекопитающих не являются столь жестко детерминированными, как у низших организмов, поэтому точное расположение нервной клетки не является строго фиксированным, и отыскать "идентичные" нейроны в мозге млекопитающих практически невозможно. Отсюда понятно, что вариабельность строения нервной системы млекопитающих значительно возрастает и проявляется не только в ветвлении отростков и количестве синапсов, но и в числе и местоположении нейронов. Поэтому тем более не следует ожидать жесткой воспроизводимости структуры у генетически идентичных организмов. Вероятно, возможности для фенотипической вариабельности мозга у млекопитающих, даже имеющих идентичные генотипы, чрезвычайно велики.
Каким же образом сложнейшая живая структура - мозг человека - развивается из всего одной клетки, имеющей весьма ограниченный набор детерминант? Ответить на этот вопрос невозможно, не привлекая теории эпигенеза.
Эпигенез
Развитие не является прямым следствием развертывания генетической программы. В предыдущих разделах этой главы мы пытались показать, насколько сложны и неоднозначны процессы взаимодействия различных субстанций внутри и вне клетки, насколько тесно они связаны со всеми событиями, которые происходят внутри и вне организма, - настолько, что трудно было бы представить, что в последовательности нуклеотидов могла бы быть записана вся программа развития. Эпигенез представляет развитие как системный динамический процесс, в котором гены могут играть роль своеобразных триггеров в процессах дифференцировки клеток, направляющих развитие клеток по тому или иному пути, но при этом существует множество негенетических факторов (клеточное окружение, поступление различных сигналов от других клеточных систем и из внешней среды, различные случайности развития и т.д.), которые модифицируют развитие.
Жан-Пьер Шанже (Changeux J.-P., 1997) приводит пример с известной мутацией альбинизма, генетика которой хорошо изучена. Частота встречаемости этой мутации составляет один на 17 000 человек (рис. 9.12 а, б). Болезнь передается как рецессивный признак по простым менделевским законам. Мутация приводит к потере кожного пигмента меланина и, казалось бы, не должна затрагивать нервную систему. Однако тщательные анатомические исследования показывают, что у альбиносов имеются значительные изменения в строении латерального коленчатого тела и зрительного нерва. Здесь мы имеем дело с типичным плейотропным эффектом действия гена. Мутации, затрагивающие центральную нервную систему, чаще всего плейотропны. Альбинизм - одна из них. Как же возникает этот плейотропный эффект в случае альбинизма? Мы знаем, что альбиносы имеют красные глаза. Объясняется это тем, что сетчатка не содержит пигмента меланина, так же как и прочие клетки. Слой пигментных клеток в сетчатке появляется на ранних стадиях развития эмбриона, когда нейроны сетчатки еще продолжают делиться, а зрительный нерв еще не начал формироваться. В этот период эмбриональные нейроны сетчатки и пигментные клетки тесно соприкасаются. Вполне вероятно, что между этими слоями клеток происходит обмен сигналами. При этом, если пигмент присутствует, нейроны посылают свои аксоны в правильном направлении, и происходит нормальное формирование всего зрительного пути. Если пигмента нет, нервные волокна в зрительном нерве теряют упорядоченную организацию, беспорядочно перемешиваются и не дают того характерного перекреста, который существует в зрительном пути. В результате происходит реорганизация латерального коленчатого ядра и всего зрительного пути вплоть до коры мозга. Таким образом, в данной эмбриональной системе нарушение взаимодействия между двумя элементами в сети клеточных взаимодействий вызывает целый каскад изменений, затрагивающих другие элементы системы. В этом проявляется плейотропный эффект мутаций и вообще эффект единичного гена в развивающейся системе.
Одним из важнейших этапов морфогенеза нервной системы является установление функциональных связей между клетками (как между самими нейронами, так и между нейронами и клетками тех органов и тканей, которые они иннервируют). Не нужно доказывать, что от характера нейронных сетей во многом будет зависеть и поведение индивида. Что же представляет собой эпигенез нервных связей? Какая роль здесь может быть отведена генам и какая - среде?
Как один параметр, измеренный с помощью смартфона, определяет состояние вашего организма
Многие ученые считают, что будущее за превентивной медициной: наши гаджеты будут собирать достаточное количество информации о показателях здоровья, чтобы можно было начать принимать меры еще до того, как появится реальная проблема. Пока это во многом мечты: точные замеры по-прежнему делаются в лабораториях и клиниках на дорогом и мощном оборудовании.
Как это возможно? Расскажем в нашем гиде.
Использовать HRV начали еще в 1960-х. Его придумали как неинвазивный способ измерять уровень стресса в организме, оценивать функциональное состояние, риск заболеть и другие параметры. Изначально HRV применяли, чтобы следить за самочувствием астронавтов. Но вариабельность оказалась таким всеобъемлющим показателем, что вскоре изучать ее стали и за пределами NASA.
Если очень упрощать — это показатель, отражающий неравномерность вашего сердцебиения.
Сердце не бьется с равными интервалами. Если ваш пульс — 60 ударов в минуту, это не значит, что ваше сердце сокращается ровно раз в секунду. На самом деле, ваше сердцебиение выглядит примерно так:
Большим прорывом стало появление новых технологий — в частности, смартфонов с камерами и вспышкой. Вы просто прикладываете палец к камере, и она фиксирует каждый удар сердца — приток крови затемняет кожу.
Показатели вариабельности рассчитывают различные приложения. Среди них, к примеру, Welltory — один из топовых сервисов в этой сфере с российскими корнями. Есть еще HRV4Training — это приложение заточено под спортсменов и помогает понять, как тренировки влияют на вариабельность (и наоборот). Приложение платное, им пользуются профессиональные спортсмены вроде членов NBA, NHL и участников Олимпийских игр.
Если вы хотите повысить точность измерений, можно подключать к приложениям гаджеты, которые считывают показатель вариабельности сердечного ритма — например, нагрудный датчик, специальный фитнес-браслет или клипсу. Есть и такие приложения — в частности, CardioMood и Elite HRV, — где вариабельность измеряется не с помощью камеры, а исключительно с помощью кардиомониторов.
Также показатель вариабельности самостоятельно измеряют некоторые гаджеты: например, Apple Watch и Oura Ring (кольцо, чья основная цель — мониторинг сна). Результаты можно увидеть в приложениях Apple Health и Oura соответственно. Но тут есть нюанс: эти гаджеты измеряют всего один показатель вариабельности — и поэтому их нельзя использовать для расширенной аналитики, в том числе подключать к приложениям, разработанным именно для анализа вариабельности.
Один из главных параметров вариабельности сердечного ритма — это SDNN (Standard Deviation of the Normal-to-Normal). Как можно догадаться из названия, он помогает узнать стандартное (среднеквадратичное) отклонение интервалов между ударами сердца — их еще называют RR-интервалами — от среднего значения. Именно этот параметр отслеживают Apple Watch, и его можно увидеть в приложении Apple Health.
Есть еще один важный параметр вариабельности, сходный с SDNN — RMSSD (Root Mean Square of Successive Differences). Для его расчета используется разница между каждым RR-интервалом и предыдущим интервалом — то есть этот показатель дает представление о динамике. Параметр RMSSD использует в измерении вариабельности кольцо Oura Ring — его вы увидите на графике HRV в приложении Oura.
И SDNN, и RMSSD, и RR-интервалы измеряются в миллисекундах (мс).
На базе полученных параметров — SDNN, RMSSD и RR-интервалов — высчитывают и другие показатели. Один из важнейших — это pNN50: он показывает вероятность того, что каждый случайно выбранный интервал будет отличаться от среднего более чем на 50 мс. Сравнивая здоровых людей с теми, у кого, например, есть проблемы с сердцем, можно увидеть, что у здоровых показатель pNN50 оказывается выше.
Это главный вопрос. Речь здесь идет не прямом соответствии показателя состоянию организма (сдаешь анализ на кортизол –> понимаешь, какой у тебя уровень стресса), а о корреляции. Но — корреляции, подкрепленной большой статистикой.
Наблюдая, например, за показателем SDNN в течение длительных — суточных — измерений, ученые выяснили, что вариация этого показателя отражает, насколько хорошо в целом организм контролирует работу сердца. Это косвенно говорит о том, эффективна ли вегетативная (автономная) нервная регуляция организма. Обнаружили они это математически — проследив за корреляциями показателя SDNN и параметров, отражающих работу вегетатики.
Вегетативная система регулирует работу желез и внутренних органов в автономном режиме — в том смысле, что не зависит от воли человека: мы не можем усилием мысли заставить сердце биться быстрее или сузить зрачки. Состоит из двух дополняющих друг друга частей — симпатической и парасимпатической. Первая, вопреки названию, обычно не сулит ничего хорошего — это система, реагирующая на стресс. Вторая — регулирует работу организма в расслабленном, спокойном состоянии. Проще всего представить работу двух систем на примере травоядного животного — скажем, зебры: пока она мирно пасется, работает парасимпатическая система, при виде хищника включается система симпатическая. Чрезмерная, незатихающая активность симпатической системы у человека — признак хронического стресса.
С RMSSD, который достаточно точен даже при краткосрочных замерах — около 5 минут, другая история. Ученые во время своих экспериментов, тоже математически, выяснили, что в коротких промежутках на разнице между соседними ударами сердца и вариабельности сердечного ритма больше сказывается парасимпатика — та часть автономной нервной системы, что отвечает за расслабление. Именно поэтому параметр RMSSD можно использовать для того, чтобы оценить, насколько хорошо организм сейчас восстанавливается.
В итоге: RMSSD — более точный параметр для краткосрочных замеров, больше реагирует на парасимпатику, позволяет прямо сейчас оценить восстановление; SDNN — менее точный в быстрых замерах, имеет смысл наблюдать за ним в динамике, чтобы оценить, насколько вы в стрессе, сбалансирована ли автономная нервная система и не является ли ваша симпатика чересчур активированной.
А вот LF-волны, напротив, отражают активность симпатической нервной системы — той самой, что отвечает мобилизацией на стресс. Если их мощность достаточна, значит, вы в тонусе. Слишком высокий показатель может говорить о том, что вы перенапряглись, и нужно сбавить обороты. Низкая активность LF волн — показатель того, что вы чересчур расслаблены, и надо собраться и добавить здорового стресса в жизнь.
Еще один важный показатель — это соотношение LF/HF. Оно отражает то, насколько сбалансирована работа вегетативной нервной системы между двумя ее отделами — симпатическим и парасимпатическим. В норме это соотношение должно быть не ниже единицы.
Показатель VLF тоже говорит скорее о состоянии организма в целом. Он помогает определить, справляется ли автономная нервная система с регуляцией вашего состояния — или для борьбы со стрессом уже приходится подключать центральную нервную систему.
Я измерила вариабельность сердечного ритма во время написания этого текста. Все показатели оказались в порядке: SDNN равен 76 мс (это даже лучше, чем в среднем у женщин моего возраста — 25–35 лет), RMSSD — 59 мс, тоже чуть лучше, чем в среднем. Если же брать нормативные диапазоны, то я буду на верхней границе нормы — отличный результат. И pNN50, который у меня равен 32,8%, находится ровно на уровне среднего здорового молодого человека.
Приложение, которое я использовала — Welltory — выдало мне вердикт: сейчас вы в хорошем состоянии, у вас много энергии, а стресс оптимален. Поэтому, например, я могу сегодня пойти на силовую тренировку или взяться за сложную задачу по работе (чем я, собственно, и занимаюсь).
Но завтра мои параметры могут быть совсем иными — а значит, я получу другие советы и буду корректировать нагрузку в соответствии со своим состоянием.
Другой пример. Вчера я сделала измерение HRV перед сном.
Показатель HF-волн был на уровне 2170 мc2, LF — 1580 мc2. Соответственно, соотношение LF/HF было равно 0,7 — вроде бы ниже нормы. Но, как выяснилось, для позднего вечера это в самый раз: это значило лишь, что я хорошо восстанавливаюсь, и организм вошел в режим расслабления перед сном.
Как рассчитываются эти факторы? Все довольно просто.
Есть готовые формулы, которые исследователи вывели математически, изучая разные параметры HRV, объективные и субъективные факторы самочувствия человека. Оказалось, что уровень стресса коррелирует с SDNN и LF — показателями, связанными с симпатикой. Энергия рассчитывается на базе работы парасимпатики, то есть параметров RMSSD и HF: чем хуже работает парасимпатическая нервная система, тем больше усталости копится — и энергии становится меньше. Наконец, показатель продуктивности/тяжести дня скоррелирован с работой префронтальной коры: чем больше она вынуждена вмешиваться в контроль за работой сердца, тем меньше ресурса остается для продуктивной работы. И определить это можно с помощью параметра VLF.
Вариабельность сердечного ритма — хороший способ быстро и достаточно точно оценить функциональное состояние организма. В отличие от пульса, который в большей степени отражает реакцию организма на физическую активность, HRV учитывает также ментальную и эмоциональную нагрузку. Поэтому, измерив вариабельность сердечного ритма, вы можете в целом оценить, как ваше тело переносит все происходящее в вашей жизни.
Показатели, связанные с HRV, нестабильны. Поэтому интереснее всего наблюдать за ними в динамике. Если уж решите измерять вариабельность сердечного ритма, делайте это регулярно, желательно — в одно и то же время. Хотя бы 4–5 замеров в неделю — и со временем вы сможете увидеть какие-то тренды, заметить корреляцию параметров с образом жизни и, возможно, внести в него какие-то изменения.
Наверное, не стоит относиться к показателям вариабельности слишком серьезно. Замеры не должны заменять здравый смысл и ощущения, но они могут помочь в некоторых ситуациях. Например, так.
- Можно сделать вывод о том, как работать: продолжать в том же духе, устроить небольшой перерыв и размяться, чтобы проветрить голову и восстановить энергию, или же свернуть по возможности все дела до завтра. Высокий параметр LF, который к тому же превышает HF, говорит о том, что организм в тонусе — можно продолжать дела. Если все наоборот — значит, организм уже перешел к фазе восстановления, и стоит сделать перерыв. А если и это не поможет — остановиться и перенести оставшиеся дела на утро.
- Стоит отложить тяжелую тренировку, если показатели говорят о низкой энергии. Если ваш показатель RMSSD снижается, значит, парасимпатическая нервная система работает не очень хорошо — можно подстегнуть ее, сходив на йогу. А вот когда SDNN и RMSSD достаточно высоки, это значит, что ваш организм хорошо выдерживает стресс и восстанавливается — и он будет не против пробежки или приседаний со штангой.
- Имеет смысл изменить режим сна, если данные говорят о необходимости восстановиться. Низкие параметры RMSSD и HF, особенно в совокупности с высоким VLF — знак, что стоит посвятить больше времени отдыху.
- Какие задачи выбирать: браться ли за сложные, комплексные задачи, требующие умственного напряжения, сделать что-то творческое или разобраться с рутиной. Например, если у вас высокий показатель VLF, это значит, что мозг был вынужден подключиться к управлению ритмом сердца — на сложные и творческие задачи, требующие концентрации, у него вряд ли останутся силы. Поэтому в такой день займитесь лучше рутинной работой.
Хотите больше полезной, научно подтвержденной информации? Подпишитесь на наши телеграм, фейсбук или рассылку.
Мы попросили физиологов понятно объяснить принцип работы этих показателей. В качестве бонуса расскажем, почему в условиях эпидемии их отслеживание может кому-то из вас или ваших близких спасти жизнь.
Предыстория: технологии из космической кардиологии
Методология ВСР только появляется в массовой индустрии фитнес-гаджетов, однако её история насчитывает почти 60 лет и берет начало в 1960-х, годах на старте космических программ супердержав.
В ходе исследований пульса у космонавтов (телекоммуникационные данные уже позволяли передавать их ритмограмму с орбиты на землю) были определены механизмы адаптации организма к изменяющимся условиям как внешней среды (например, к невесомости), так и внутренней среды (например, простуда или вирусная атака), а также свойства работы самих адаптационных систем. Эти наблюдения переосмыслили понятие здоровья. Здоровье – это не просто отсутствие болезни, а готовность организма адаптироваться к изменениям среды. Чем лучше здоровье, тем дольше вы можете приспосабливаться ко все более стрессовым изменениям.
Медики, разработчики ВСР, определили, что за успешную адаптацию к меняющимся условиям внешней и внутренней среды отвечает вегетативная нервная система, состоящая из двух отделов:
- симпатическая система (активация организма в условиях изменений внешней среды, отражает состояние стресса )
- парасимпатическая система, ее основной частью является блуждающий нерв (восстановление и отдых после стресса и регуляция внутренней среды организма)
- Если мощи компонентов вегетативной системы не хватает или они разбалансированы, к управлению адаптацией подключаются гумморальная система (отвечает за гормональное регулирование) и высшие отделы центральной нервной системы (реагирует на раздражители внешней среды через органы чувств)
Методология ВСР оказалась настолько эффективной с точки зрения превентивной медицины, то есть медицины, направленной не на борьбу с уже наступившими болезнями, а на их предотвращение, что уже с 1970-х годов ВСР стала крайне популярной в спортивной медицине при подготовке профессиональных спортсменов к соревнованиям, а позже – в промышленной медицине, авиации и пр. Вышедшая из космической медицины ВСР также стала предвестником получившей позднее признание интегративной медицины, то есть медицины, направленной на изучение организма как целостной системы и механик этого взаимодействия.
Сегодня, на фоне растущей необходимости следовать здоровому образу жизни и интереса к биохакингу, ВСР начинает становиться доступным обычным людям. Вполне возможно, что ВСР-замеры есть в вашем фитнес-браслете или пульсометре, а вы об этом не догадываетесь.
Что лежит в основе методологии ВСР в вашем фитнес-гаджете?
В основе лежит основа сердечного пульса, а точнее – вариабельности между ударами (на ритмограмме – RR- и NN-зубцов). Вариабельность предполагает, что при 60 ударах в минуту (в 60 секундах) разрыв между RR- и NN- зубцами в части ударов будет менее секунды, а часть – более.
При дальнейшем математическом анализе ритмограммы мы можем выявить волновую структуру вариабельности. При этом выделяется 3 частоты волн:
- короткие волны (High Frequency Waves, или HF-волны). Ученые выявили, что они характеризуют работу парасимпатической системы, отвечающей за восстановление в организме. Отражают влияние на пульс со стороны блуждающего нерва.
- длинные волны (Low Frequency Waves, или LF-волны). Эти волны отражают работу симпатической системы. В нашем организме она отвечает за реакцию организма на стресс.
- сверхдлинные волны (VLF-лн. Они отражают работу гумморальной системы с помощью гормонального воздействия, которая подключается к регулированию адаптации организма, когда силы симпатики и парасимпатики не хватает.
Дальнейшее преобразование данных позволяет выявить спектрограмму, определив уровень воздействия каждой из систем на ваш сердечный ритм. А значит, мы можем четко понять, какая из систем влияет на вас в момент замера в большей мере: симпатическая система (стресс), парасимпатическая система (восстановление после стресса) или гуморальная система (гормональное вмешательство при недостаточной работе симпатики и парасимпатики).
Научная работа с данными ритмограмм – для подтверждения гипотез в рамках ВСР были проведены многочисленные популяционные исследования по всему миру – позволила ученым сформулировать несколько показателей. Методология их расчётов была закреплена в 1996 году в международном стандарте измерения, физиологической интерпретации и клинического использования ВСР. Всего насчитывается более 20 показателей, однако здесь мы разберем несколько наиболее часто встречающихся в фитнес-гаджетах на российском рынке:.
С помощью этого показателя вы можете отслеживать своё комплексное физиологическое состояние и готовность организма к дополнительным физическим, интеллектуальным и эмоциональным перегрузкам (вы отвечаете на вопрос, пойдет ли на пользу здоровья предстоящая физическая тренировка или волнительная презентация). Также важно понимать, что как слишком низкие, так и слишком высокие показатели TP критичны и говорят либо о нехватке мощи, либо о перенапряжении систем адаптации. (Ниже и далее указаны шкалы для здоровых людей в удовлетворительной физической форме. Данная шкала не подходит для профессиональных спортсменов с отличающимися нормативами)
Стресс отражает данные симпатической системы (LF-волны). Индекс Стресса отражает, в какой степени вы испытываете напряжение в ответ на стрессовый фактор. Важно понимать, что под стрессом в методики ВСР предполагается не психологический, а физиологический стресс. Как отсутствие, так и перенапряжение стресса одинаково критичны для организма: важно держать показатель в балансе для того, чтобы избегать общего ухудшения физиологического состояния.
Вегетативный баланс (LF / HF)
Вегетативный баланс отражает сбалансированность симпатической (стресс) и парасимпатической (восстановление) систем. Таким образом, вы в любой момент можете понимать, насколько ваш организм сбалансирован и что в нем преобладает на момент замера – симпатика (стресс) или парасимпатика (восстановление).
Как начать измерять вариабельности сердечного ритма?
Чтобы начать делать замеры ВСР, прежде всего, вам нужен пульсометр, смарт-часы или фитнес-браслет с функцией замеров ВСР. Такая функция уже встроена у топовых моделей Apple Watch, Garmin, Polar или Suunto. Однако это совсем не значит, что за доступ к замерам ВСР нужно много заплатить.
Например, вы можете использовать популярные в спортивной среде нагрудные пульсометры, средняя цена за которые находится в диапазоне 4 000 – 6 000 рублей (при среднем чеке на смарт-часы в России в 2019 году в районе 18 000 рублей). Далее вы можете подключить ваш пульсометр к одной из платформ по анализу данных ВСР, например к Engy Health (это бесплатно и на русском языке) или же к иностранным платформам (HRV4Training, TrainingPeaks, EliteHRV, но они платные и на иностранном языке). Самое главное, при выборе пульсометра убедитесь, что в выбранном вами пульсометре есть поддержка замеров ВСР и функционал дальнейшей передачи данных на сторонние платформы.
Чтобы измерять ВСР, придерживайтесь несколько простых правил:
- делайте замеры регулярно (не реже 1 раза в день)
- в рамках одного дневного сценария (например, только утром после утренних гигиенических процедур до завтрака),
- при измерении не шевелитесь
- делайте замер не менее 5 минут (более короткий замер даст недостоверные данные). Это нужно, чтобы на ритмограмме проявились HF, LF и VLF волны.
Некоторые сервисы предлагают делать замеры пульса через просвет пальца с камеры телефона, что удобно, но обуславливает большое количество шумов на ритмограмме, и в итоге у вас бОльшая вероятность получить некорректные данные.
Бонус. А причем здесь коронавирус?
Возможность увидеть уровень состояния парасимпатической системы, то есть активности блуждающего нерва, может сохранить вам жизнь во время пандемии коронавируса.
Немного медицинских подробностей для тех, кто хочет глубже разобраться в вопросе. Холинергический противовоспалительный путь выглядит следующим образом: на поверхности макрофагов, вырабатывающих про-воспалительные цитокины, находятся ацетилхолиновые рецепторы. Нейромедиатор ацетилхолин, секретируемый нейронами, образующими блуждающий нерв, активирует эти рецепторы, подавляя работу макрофагов и останавливая выработку цитокинов. Активация блуждающего нерва происходит через холинергическую сеть мозга, которая повышает активность холинергического противовоспалительного пути. Таким образом, любая стимуляция парасимпатической нервной системы через блуждающий нерв приводит к повышению уровня ацетилхолина и подавляет воспаление. Одновременно этот процесс через эфферентные пути приводит к увеличению вариабельности сердечного ритма.
В итоге, защитит ли меня мой фитнес-гаджет от коронавируса?
Если вы определили с помощью ВСР, что ваша парасимпатика в полном порядке, это, безусловно, не значит, что можно смело нарушать карантинные меры и вирус вам не страшен. Ведь холинергический противовоспалительный путь – лишь один из сценариев борьбы с последствиями заражения. Однако можно с уверенностью сказать, что хорошие показатели работы парасимпатики значительно повышают ваши шансы с минимальной потерей перенести заражение, и это свидетельство о готовности организма дать качественный ответ вирусу.
А вот в случае, когда активность вашего блуждающего нерва мала (низкий показатель RMSSD или HF), или вегетативная система находится в дисбалансе и значения вегетативного баланса (LF / HF) находятся в критической области, у вас есть шанс, контролируя показатель напряжения парасимпатической системы и отслеживая, что влияет на его улучшение, изменить ситуацию к лучшему и снизить риск осложнений. Замеры ВСР у себя и близких позволят определить, кто из вашего окружения в зоне риска, а кто готов встретить вирус во всеоружии.
Go проверять свои фитнес-гаджеты на возможность замеров ВСР!
В данной статье мы расскажем, что такое вариабельность сердечного ритма, что на нее влияет, как ее измерить и что делать с полученными данными.
Введение В данной статье мы расскажем, что такое вариабельность сердечного ритма, что на нее влияет, как ее измерить и что делать с полученными данными. Статья включает небольшую практическую часть по анализу данных, которая в большей степени направлена для спортсменов, тренирующих выносливость. В первой части будет немного физиологии, во второй вы узнаете как измерять вариабельность сердечного ритма и какие использовать параметры. В следующей мы расскажем о выборе программного обеспечения и как все это использовать в тренировочном процессе. Мы постарались максимально упростить некоторые моменты, сохранив при этом основную суть. Надеюсь нам это удалось.Физиология Наш организм это отлаженная и сложная система, которая способна адаптироваться к изменениям окружающей и внутренней среды. Одной из важнейших функций организма является поддержание в очень узких специфических диапазонах основных параметров: например температуру тела, pH крови и многое другое. Вся эта структура работает автономно, она не зависит от нашего мышления, в том числе и работа сердца. Все эти процессы регуляции называются гомеостаз и являются основой функционирования живого организма.
Наше сердце - это не просто насос. Это очень сложный, центр обработки информации, который общается с головным мозгом с помощью нервной и гормональной системы, а также другими путям . В статьях [1, 2] доступно обширное описание и схемы взаимодействия сердца с головным мозгом.
И мы так же не управляем нашим сердцем, его автономность обусловлена работой синусового узла - который запускает сокращение сердечной мышцы. Он обладает автоматизмом, то есть самопроизвольно возбуждается и запускает распространение потенциала действия по миокарду, что вызывает сокращение сердца.
Сердце работает автономно благодаря синусовому узлу.
Рисунок 2. Автономная работа сердца
Синусовый узел тоже работает сам по себе, несмотря на то, что на нем сказывается работа всего организма - центральной нервной система, вегетативной (автономной) нервной система (ВНС), а также различных гуморальных и рефлекторных воздействий.
Синусовый узел отражает работу всех регуляторных систем организма.
Работу всех регуляторных систем нашего организма можно представить в виде двухконтурной модели, предложенной Баевским Р.М. [3]. Он предложил разделить все регуляторные системы (контуры управления) организма на два типа: высший - центральный контур и низший - автономный контур регуляции (рис. 3).
*Рисунок 3. Двухконтурная модель регуляции сердечного ритма (по Баевскому Р.М., 1979 г.) CCC - сердечно-сосудистая система.
Автономный контур регуляции состоит из синусового узла, который непосредственно связан с сердечно-сосудистой системой (ССС) и через нее с системой дыхания (С.д.) и нервными центрами, обеспечивающими рефлекторную регуляцию дыхания и кровообращения. Непосредственное воздействие на клетки синусового узла оказывают блуждающие нервы (V).
Центральный контур регуляции воздействует на синусовый узел через симпатические нервы (S) и гуморальный канал регуляции (г.к.), либо изменяет центральный тонус ядер блуждающих нервов имеет более сложную структуру, он состоит из 3 уровней, в зависимости от выполняемых функций. Уровень В: центральный контур управления сердечным ритмом, обеспечивает “внутрисистемный” гомеостаз через симпатическую систему.
Уровень Б: обеспечивает межсистемный гомеостаз, между различными системами организма с помощью нервных клеток и гуморально ( с помощью гормонов).
Уровень А: обеспечивает адаптацию с внешней средой с помощью центральной нервной системы.
Эффективная адаптация происходит с минимальным участием высших уровней управления, то есть за счет автономного контура. Чем больше вклад центральных контуров тем сложней и “дороже” организму адаптироваться.
На наше сердце основное влияние оказывает симпатическая и парасимпатическая системы (см. рисунок 4). Они являются антагонистами друг друга. Симпатическая возбуждает нас, готовит выполнять действия типа “бей-беги”: повышает частоту сердечных сокращений (ЧСС), увеличивает липолиз . Парасимпатическая же успокаивает, чсс уменьшается, усиливается моторика кишечника. На сердечную мышцу они действуют “синергично”: при увеличение активности парасимпатических волокон также наблюдается снижение активности симпатических волокон.
Рисунок 4. Блок-схема иннервации синусового узла сердца симпатической и парасимпатической системами.
Благодаря их воздействию сердечный ритм никогда не бывает постоянным. Эта изменчивость времени между каждым ударом и называется вариабельностью сердечного ритма [4]. На записи ЭКГ это выглядит примерно так:
*Рисунок 5. Вариабельность сердечного ритма
Вариабельность сердечного ритма (ВСР) отражает работу всех регуляторных систем организма.
На этом наша вводная часть закончена, далее мы расскажем как получить данные, что с ними делать, как интерпретировать, какие возникают трудности и как все это применять в тренировочном процессе.
Начало Так как нам интересна работа всех регуляторных систем организма, а она отображается на работе синусового узла, крайне важно исключить из рассмотрения результаты действия других центров возбуждения, действие которых для наших целей будет являться помехой.
Поэтому крайне важно чтобы сокращение сердца запускал именно синусовый узел. На ЭКГ это будет проявляться в виде зубца P (отмечен красным цветом) ( см. рисунок 6)
Рисунок 6. Сердечный цикл с синусовым ритмом.
Запись Для записи вариабельности сердечного ритма необходим пульсометр, который выдает данные о вариабельности сердечного ритма, например Polar H7. Этого вполне достаточно чтобы получить точные цифры [5, 6] и свежая статья где сравнивает запись с камеры телефона [7]
Возможны различные дефекты записи из-за:
- плохого контакта с датчиком ( не забываем его смочить перед записью).
- движения во время записи
- различных мыслей
Выбираем любое программное обеспечение для записи и анализа вариабельности сердечного ритма, которое вам нравится. Об этом, позже, будет отдельная статья. Стараемся исключить все отвлекающие факторы, наша задача в идеале делать все замеры в одно и тоже время и в одном и том же комфортном для нас месте. Также рекомендую встать с кровати, сделать необходимые (утренние) процедуры и вернуться назад - это уменьшить шанс уснуть во время записи, что периодически случается. Полежать еще пару минут и включить запись. Чем продолжительней запись тем более она информативна. Для коротких записей обычно достаточно 5 минут. Есть еще варианты записи 256 RR интервалов [8, 9]. Хотя можно встретить и попытки оценить ваше состояние и по более коротким записям. Мы используем 10 минутную запись, хотя хотелось бы и побольше…Более длинная запись будет содержать больше информации о состоянии организма.
Анализ данных.
И так, мы получили массив RR интервалов, который выглядит примерно так: рисунок 7:
*Рисунок 7. 10 минутная утренняя запись вариабельности сердечного ритма.
Перед началом анализа нужно исключить из исходных данных артефакты и шумы (экстрасистолы, аритмии, дефекты записи и т.д.). Если это нельзя сделать, то такие данные не годятся, вероятней всего показатели будут либо завышены, либо занижены.
Далее разберем основные показатели для оценки состояния организма. **Методы временной области
** Вариабельность сердечного ритма может быть оценена различными способами. Один из самых простых способов - это оценить статистическую изменчивость последовательности RR интервалов, для этого используют статистический метод. Это позволяет количественно оценить вариабельность в определенном промежутке времени.
SDNN - стандартное отклонение всех нормальных (синусовых, NN) интервалов от среднего значения. Отражает общую вариабельность всего спектра, коррелирует с общей мощностью (TP), в большей степени зависит от низкочастотной составляющей. Также любое ваше движение во времени записи обязательно отразится на этом показателе. Один из основных показателей, оценивающий механизмы регуляции.
В статье [10] пытаются найти корреляцию этого показателя с VO2Max.
NN50 - количество пар последовательных интервалов, которые отличаются друг от друга более чем на 50 мс.
pNN50 - % NN50 интервалов от общего количества всех NN интервалов. Говорит о активности парасимпатической системы.
RMSSD - так же как и pNN50 свидетельствует в основном о активности парасимпатической системы [11]. Измеряется как квадратный корень из средних квадратов разностей смежных NN интервалов.
Авторы [12, 13] считают RMSSD и его производные одни из самых удобных параметров для оценки состояния спортсменов.
А работе [14] оценивают динамику подготовки триатлетов на основе RMSSD и ln RMSSD за 32 недели.
Также этот показатель коррелирует с состоянием иммунной системы [15].
CV(SDNN/R-Rср) - коэффициент вариации, позволяет оценивать влияния ЧСС на вариабельность.
Для наглядности прикрепил файл с динамикой некоторых показателей, указанных выше, в период до и после полумарафона который был 5.11.2017.
Если внимательно посмотреть на запись вариабельности, то можно увидеть что она меняется волнообразно (см. Рис. 8)
*Рис. 8 . Волнообразная структура сердечного ритма собаки =) Исключительно для большей наглядности
- Чтобы оценить эти волны надо преобразовать это все в другой вид с помощью преобразования Фурье (на рис. 9 продемонстрировано применение преобразования Фурье).
[CENTER]*Рисунок 9. Преобразование Фурье.
*[/CENTER] Теперь мы можем, оценить мощность этих волн и сравнить их между собой см.
*Рисунок 10. Спектральный анализ ВСР
Далее мы будем использовать следующий показатели :
HF (High Frequency) - мощность высокочастотной области спектра, диапазон от 0.15 Гц до 0.4 Гц, что соответствует периоду между 2.5 сек и 7 сек. Этот показатель отражает работу парасимпатической системы. Основной медиатор - ацетилхолин, который достаточно быстро разрушается. HF отражает наше дыхание. Точнее дыхательную волну - во время вдоха интервал между сокращениями сердца уменьшается, а во время выдоха увеличивается [16].
С этим показателем все “хорошо”, есть много научных статей доказывающие его взаимосвязь с парасимпатической системой.
LF (Low Frequency) - мощность низкочастотной части спектра, медленные волны, диапазон от 0.04 Гц до 0.15 Гц, что соответствует периоду между 7 сек и 25 сек. Основной медиатор - норадреналин. LF отражает работу симпатической системы.
В отличие от HF тут все сложней, не совсем ясно, действительно ли он отражает симпатическую систему. Хотя в случаи 24 часового мониторинга это подтверждается следующим исследованием [17]. Однако в большой статье [18] говорится о сложности интерпретации и даже опровергается связь этого показателя с симпатической системой.
LF/HF - отражает баланс симпатического и парасимпатического отделов ВНС.
VLF (Very Low Frequency) - очень медленные волны, с частотой до 0.04 Гц. Период между 25 до 300 сек. До сих пор не ясно, что он отображает, особенно на 5 мин записях. Есть статьи, в которых видна корреляция с циркадными ритмами и температурой тела. У здоровых людей наблюдается увеличение мощности VLF, которое происходит ночью и пики перед пробуждением [19]. Это увеличение автономной активности, по-видимому, коррелирует с пиком утреннего кортизола.
В статье [20] пытаются найти корреляцию этого показателя с депрессивным состоянием. Кроме того, малая мощность в этой полосе была связана с сильным воспалением [21, 22].
Анализировать VLF можно лишь при длительных записях.
TP (Total Power) - общая мощность всех волн с частотой в диапазоне от 0,0033 Гц до 0.40 Гц.
HFL - новый показатель, базирующийся на динамическом сравнении HF и LF составляющих вариабельности сердечного ритма. Показатель HLF позволяет характеризовать в динамике вегетативный баланс симпатической и парасимпатической систем. Увеличение этого показателя свидетельствовало о преобладании парасимпатической регуляции в механизмах адаптации, снижение показателя говорило о включение симпатической регуляции.
А вот так выглядит динамика, в период выступления на полумарафоне, показателей, обозначенных выше:
И собственно динамика всех показателей разом:
В следующей части статьи мы сделаем обзор различных приложений для оценки вариабельности сердечного ритма и потом перейдем непосредственно к практике.
** 1. Rollin McCraty, PhD; United States; Fred Shaffer, PhD, BCB, United States - Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health Risk, 2015 . [NCBI] 2. Armour, J.A. and J.L. Ardell, eds. Neurocardiology., Oxford University Press: New York. The little brain on the heart, 1994. [PDF]
3. Баевский Прогнозирование состояний на грани нормы и патологии. “Медицина”, 1979. 4.Fred Shaffer, Rollin McCraty and Christopher L. Zerr. A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability, 2014. [NCBI]
5. Vanderlei L C, Silva R A, Pastre C M, Azevedo F M, and Godoy M F, Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains, Braz. J. Med. Biol. Res., 2008.[Scielo]
6. Nunan D, Jakovljevic G, Donovan G, Hodges L D, Sandercock G R, and Brodie D A, Levels of agreement for RR intervals and short-term heart rate variability obtained from the Polar S810 and an alternative system, Eur. J. Appl. Physiol, 2008, 103(5): 529–537.
7. Plews DJ, Scott B, Altini M, Wood M, Kilding AE, Laursen PB, Comparison of Heart-Rate-Variability Recording With Smartphone Photoplethysmography, Polar H7 Chest Strap, and Electrocardiography, 2017. [NCBI]
8. Boulos M., Barron S., Nicolski E., Markiewicz W. Power spectral analysis of heart rate variability during upright tilt test: a comparison of patients with syncope and normal subjects. Cardiology, 1996; 87:1, 28.
9. Kouakam C., Lacroix D., Zghal N., Logier R., Klug D., Le Franc P., Jarwe M., Kacet S. Inadequate sympathovagal balance in response to orthostatism in patients with unexplained syncope and a positive head up tilt test. Heart 1999 Sep; 82(3):312-8
10. Arsalan Aslani, Amir Aslani,1 Jalal Kheirkhah,2 and Vahid Sobhani, Cardio-pulmonary fitness test by ultra-short heart rate variability , 2011. [PubMed]
11. Berntson GG, Lozano DL, Chen YJ., Filter properties of root mean square successive difference (RMSSD) for heart rate, 2005. [PubMed]
12. Buchheit M., Monitoring training status with HR measures: do all roads lead to Rome?, 2014. [PubMed]
13. Laurent Schmitt, Jacques Regnard, and Grégoire P. Millet, Monitoring Fatigue Status with HRV Measures in Elite Athletes: An Avenue Beyond RMSSD?, 2015. [PubMed]
14. Stanley J, D'Auria S, Buchheit M.Cardiac parasympathetic activity and race performance: an elite triathlete case study., 2015. [PubMed]
15. Germán Hernández Cruz, José Naranjo Orellana, Adrián Rosas Taraco, and Blanca Rangel Colmenero, Leukocyte Populations are Associated with Heart Rate Variability After a Triathlon, 2016. [PubMed]
16. Eckberg, D.L., Human sinus arrhythmia as an index of vagal outflow. Journal of Applied Physiology, 1983. 54: p. 961-966.
17. Axelrod, S., et al., Spectral analysis of fluctuations in heart rate: An objective evaluation. Nephron, 1987. 45: p. 202-206 . 18. George E. Billman, The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance, 2013
19. Huikuri H.V., et al., Circadian rhythms of frequency domain measures of heart rate variability in healthy subjects and patients with coronary artery disease. Effects of arousal and upright posture, 1994
20. Julia D. Blood , Jia Wu, Tara M. Chaplin, Rebecca Hommer, Lauren Vazquez, Helena J.V. Rutherford, Linda C. Mayes, and Michael J. Crowleyb,, The variable heart: High frequency and very low frequency correlates of depressive symptoms in children and adolescents, 2015. [PubMed]
21. Lampert, R., Bremner JD, Su S, Miller A, Lee F, Cheema F, Goldberg J, Vaccarino V. Decreased heart rate variability is associated with higher levels of inflammation in middle-aged men., 2008. [PubMed]
22. Carney RM, Freedland KE, Stein PK, Miller GE, Steinmeyer B, Rich MW, Duntley SP., Heart rate variability and markers of inflammation and coagulation in depressed patients with coronary heart disease, 2007. [PubMed]
23. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart Rate Variability. Standarts of Measurements, Physiological Interpretation, and Clinical Use. Circulation, 1996; 93:1043.
Читайте также: