Статистическое изучение динамики социально-экономических явлений шпора
1. ПОНЯТИЕ И КЛАССИФИКАЦИЯ РЯДОВ ДИНАМИКИ
Анализ социально-экономических явлений предполагает выявление и измерение закономерностей их развития во времени.
Процесс развития явлений во времени принято называть в статистике ДИНАМИКОЙ.
Для отображения динамики строят динамические ряды (временные, хронологические).
· ДИНАМИЧЕСКИЙ РЯД – ряд показателей, характеризующих уровень явления за определенные временные интервалы (на определенные моменты времени) и расположенных в хронологическом порядке.
Существуют различные виды рядов динамики, которые можно классифицировать по следующим признакам.
1. В зависимости от способа выражения уровней ряда (вида обобщающих показателей, которые содержит динамический ряд) выделяют ряды абсолютных, относительных и средних величин.
2. В зависимости от того, как уровни ряда отражают состояние явления: на определённые моменты времени (на начало месяца, квартала, года) или за определённые интервалы времени (за сутки, месяц, год и т. п.); выделяют, соответственно, моментные и интервальные динамические ряды.
3. В зависимости от расстояния между уровнями выделяются ряды динамики с равноотстоящими уровнями и неравноотстоящими уровнями во времени.
4. В зависимости от наличия основной тенденции изучаемого процесса ряды динамики подразделяются на стационарные и нестационарные. Если математическое ожидание значения признака и дисперсия (основные характеристики случайного процесса) постоянны, не зависят от времени, то процесс считается стационарным, и ряды динамики также считаются стационарными. Экономические процессы во времени обычно не являются стационарными, так как содержат основную тенденцию развития, но их можно преобразовать в стационарные путём исключения тенденций.
2. ПОКАЗАТЕЛИ ДИНАМИКИ
Для анализа скорости и интенсивности развития явления во времени применяются: абсолютный прирост, темпы роста и прироста, абсолютное значение одного процента прироста, а также динамические средние (средний уровень ряда, средний абсолютный прирост, средний темп роста, средний темп прироста).
Показатели динамики могут быть рассчитаны цепным и базисным способом.
При расчёте показателей по цепной системе каждый уровень ряда сравнивается с предыдущим (смежным) уровнем. При расчёте показателей по базисной системе за постоянную базу сравнения принимается какой-либо один уровень ряда.
При расчёте показателей динамики приняты следующие условные обозначения: Уо – начальный уровень ряда; Уi – промежуточный уровень; Уn – конечный уровень ряда.
Абсолютный прирост (DУ) характеризует размер увеличения (уменьшения) уровня ряда за определённый промежуток времени. Он равен разности двух сравниваемых уровней ряда и выражает абсолютную скорость роста:
Если абсолютные приросты получаются отрицательными, имеет смысл говорить об абсолютном снижении уровня явления.
Показатель темпа прироста (DТ) характеризует относительную скорость изменения уровня ряда в единицу времени и показывает, на сколько процентов сравниваемый уровень больше или меньше уровня, принятого за базу сравнения:
Показатель абсолютного значения одного процента прироста служит оценкой значимости веса единицы прироста.
Методы расчёта среднего уровня интервального и моментного рядов динамики различны.
3. ВЫЯВЛЕНИЕ И ХАРАКТЕРИСТИКА ОСНОВНОЙ ТЕНДЕНЦИИ РАЗВИТИЯ
Одной из задач, возникающих при анализе рядов динамики, является установление количественной закономерности изменения уровней изучаемого показателя во времени. В некоторых случаях эта закономерность, общая тенденция развития объекта исследования вполне ясно отображается уровнями динамического ряда (систематическое их увеличение, не нарушаемое на протяжении всего рассматриваемого периода, либо систематическое уменьшение).
Однако часто приходится встречаться с такими рядами динамики, когда уровни ряда претерпевают самые различные изменения (то возрастают, то убывают), и можно говорить лишь об общей тенденции развития явления: либо тенденции к росту, либо к снижению. В этих случаях для определения основной тенденции развития явления используются особые приёмы обработки рядов динамики.
· Выявление основной тенденции развития (ТРЕНДА) называется в статистике ВЫРАВНИВАНИЕМ ДИНАМИЧЕСКОГО (ВРЕМЕННОГО) РЯДА, а методы выявления основной тенденции – методами выравнивания.
Один из наиболее строгих методов выявления тенденции – аналитическое выравнивание ряда динамики. В этом случае фактические уровни заменяются уровнями, вычисленными на основе определённой кривой. Предполагается, что она отражает общую тенденцию изменения во времени изучаемого показателя.
Для аналитического выравнивания наиболее часто используются следующие виды трендовых моделей (таблица).
2. Парабола второго порядка
3. Кубическая парабола
8. Логистическая кривая
Выбор формы кривой основан на анализе графического изображения уровней ряда (линейной диаграммы).
Решение системы уравнений позволяет получить выражения для параметров а0 и а1. В рядах динамики техника расчёта параметров упрощается за счёт того, что показателям времени присваиваются такие значения, чтобы их сумма была равна нулю.
При условии, что å t = 0, исходные нормальные уравнения примут вид:
По данным рядов динамики, приведенных в заданиях 6.1 – 6.7, укажите вид динамического ряда, проанализируйте динамику явления, рассчитав следующие показатели: абсолютные приросты, темпы роста и темпы прироста цепным и базисным способом (в последнем случае в качестве постоянной базы сравнения примите уровень первого года), абсолютный размер одного процента прироста, а также динамические средние.
Произведите аналитическое выравнивание динамического ряда по прямой. Результаты расчётов представьте в виде таблиц. Сделайте выводы.
Задача 6.1. Жилищный фонд г. Тюмени характеризуется следующими данными.
СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ДИНАМИКИ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ
ПОНЯТИЕ И КЛАССИФИКАЦИЯ РЯДОВ ДИНАМИКИ
Процесс развития, движения социально-экономических явлений во времени в статистике принято называть динамикой. Для отображения динамики строят ряды динамики (хронологические, временные), которые представляют собой ряды изменяющихся во времени значений статистического показателя, расположенных в хронологическом порядке. В нем процесс экономического развития изображается в виде совокупности дискретных значений , отражающих изменение параметров экономической системы во времени.
Составными элементами ряда динамики являются показатели уровней ряда и периоды времени (годы, кварталы, месяцы, сутки) или моменты (даты) времени.
Существуют различные виды рядов динамики. Их можно классифицировать по следующим признакам.
1. В зависимости от способа выражения уровней ряды динамики подразделяются на ряды абсолютных, относительных и средних величин.
2. В зависимости от того, как выражают уровни ряда состояние явления на определенные моменты времени (на начало месяца, квартала, года и т. п.) или его величину за определенные интервалы времени (например, за сутки, месяц, год и т. п.), различают соответственно моментные и интервальные ряды динамики.
Уровни интервального ряда динамики абсолютных величин характеризуют собой суммарный итог какого-либо явления за определенный отрезок времени. Они зависят от продолжительности этого периода времени, и поэтому их можно суммировать как не содержащие повторного счета.
Отдельные же уровни моментного ряда динамики абсолютных величин содержат элементы повторного счета, например, число вкладов населения, учитываемых за январь, существует и в настоящее время, являясь единицами совокупности и в любом другом месяце.
3. В зависимости от расстояния между уровнями ряды динамики подразделяются на ряды динамики с равноотстоящими уровнями и неравноотстоящими уровнями во времени. Ряды динамики следующих друг за другом периодов или следующих через определенные промежутки дат называются равноотстоящими (пример о числе вкладов в Сбербанк РФ за январь — июнь 1997 г.). Если же в рядах даются прерывающиеся периоды или неравномерные промежутки между датами, то ряды называются неравноотстоящими (пример в табл. 1).
4. В зависимости от наличия основной тенденции изучаемого процесса ряды динамики подразделяются на стационарные и нестационарные.
Если математическое ожидание значения признака и дисперсия (основные характеристики случайного процесса) постоянны, не зависят от времени, то процесс считается стационарным и ряды динамики также называются стационарными. Экономические процессы во времени обычно не являются стационарными, так как содержат основную тенденцию развития, но их можно преобразовать в стационарные путем исключения тенденций.
СОПОСТАВИМОСТЬ УРОВНЕЙ И СМЫКАНИЕ РЯДОВ ДИНАМИКИ
Основным условием правильного построения ряда динамики является сопоставимость всех входящих в него уровней. Данное условие решается либо в процессе сбора и обработки данных, либо путем их пересчета.
Основные причины несопоставимости уровней ряда динамики.
Несопоставимость уровней ряда может возникнуть вследствие изменения единиц измерения или единиц счета. Нельзя, например, сравнивать и анализировать цифры о производстве тканей, если за одни годы цифры даны в погонных метрах, а за другие -в квадратных метрах.
периодов (переходного) имелись данные, исчисленные по разной методологии
Динамика объема продукции
1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | |
Объем продукции,млн руб.:по старой методикепо новой методике | 19,1— | 19,7— | 20,0- | 21,222,8 | —23,6 | —24,5 | -26,2 | —28,1 |
Сомкнутый (сопоставимый) ряд абсолютных величин, млн руб. | 21,0 | 21,7 | 22,0 | 22,8 | 23,6 | 24,5 | 26,2 | 28,1 |
Сопоставимый рядотносительныхвеличин, в % к 1994 г. | 90,1 | 92,9 | 94,3 | 100,0 | 103,5 | 107,5 | 114,9 | 123,2 |
Для этого на основе данных об объеме продукции по новой и старой методике находим соотношение между ними: 22,8 : 21,2 = 1,1. Умножая на полученный коэффициент данные, приводим их таким образом в сопоставимый вид с последующими уровнями.
Другой способ смыкания рядов динамики заключается в том, что уровни года, в котором произошли изменения , как до изменений, так и после изменений (в старой и новой методике, т. е. 21,2 и 22,8) принимаются за 100%, а остальные пересчитываются в процентах по отношению к этим уровням соответственно (в старых ценах - по отношению к 21,2, в новых ценах - к 22,8).
Показатели анализа ряда динамики
Анализ интенсивности изменения во времени осуществляется с помощью показателей, получаемых в результате сравнения уровней, к таким показателям относятся: абсолютный прирост, темп роста, темп прироста, абсолютное значение одного процента прироста.
Система средних показателей включает средний уровень ряда, средний абсолютный прирост, средний темп роста, средний темп прироста.
Показатели анализа динамики могут вычисляться на постоянной и переменных базах сравнения. При этом принято называть сравниваемый уровень отчетным, а уровень, с которым производится сравнение, — базисным.
Для расчета показателей анализа динамики на постоянной базе каждый уровень ряда сравнивается с одним и тем же базиснЫм уровнем. В качестве базисного выбирается либо начальный уровень в ряду динамики, либо уровень, с которого начинается какой-то новый этап развития явления. Исчисляемые при этом показатели называются базисными
Для расчета показателей анализа динамики на переменной базе каждый последующий уровень ряда Cрaвнивaeтся с предыдущим. Вычисленные таким образом показатели анализа динамики называются цепными.
Важнейшим статистическим показателем анализа динамики является абсолютный прирост (сокращение), т.е. абсолютное изменение,характеризующее увеличение или уменьшение уровня ряда за определенный промежуток времени. Абсолютный прирост с переменной базой называют скоростью роста.
Абсолютный прирост Абсолютный прирост (цепной): (базисный):
уi-1 — уровень предшествующего периода;
у0 — уровень базисного периода.
Цепные и базисные абсолютные приросты связаны между собой- сумма последовательных цепных абсолютных приростов равна базисному, т. е. общему приросту за весь промежуток времени (
Для оценки интенсивности, т. е. относительного изменения уровня динамического ряда за какой-либо период времени исчисляют темпы роста (снижения).
Интенсивность изменения уровня оценивается отношением
отчетного уровня к базисному. Показатель интенсивности изменения уровня ряда, выраженный в долях единицы, называется коэффициентом роста, а в процентах - темпом роста. Эти показатели интенсивности изменения отличаются только единицами измерения.
Коэффициент роста (снижения) показывает, во сколько раз сравниваемый уровень больше уровня, с которым производится сравнение (если этот коэффициент больше единицы) или какую часть уровня, с которым производится сравнение, составляет сравниваемый уровень (если он меньше единицы). Темп роста всегда представляет собой положительное число.
Коэффициент роста: Коэффициент роста:
(цепной) (базисный)
Темп роста (цепной): Темп роста (базисный):
Между цепными и базисными коэффициентами роста существует взаимосвязь (если базисные коэффициенты исчислены по отношению к начальному уровню ряда динамики): произведение последовательных цепных коэффициентов роста равно базисному коэффициенту роста за весь период (П К ц р = К б р), а частное от деления последующего базисного темпа роста на предыдущий равно соответствующему цепному темпу роста.
Относительную оценку скорости измерения уровня ряда в единицу времени дают показатели темпа прироста (сокращения).
Темп прироста (сокращения) показывает, на сколько процентов сравниваемый уровень больше или меньше уровня, принятого за базу сравнения, и вычисляется как отношение абсолютного прироста к абсолютному уровню, принятому за базу сравнения.
Темп прироста может быть положительным, отрицательным или равным нулю, выражается он в процентах и долях единицы (коэффициенты прироста).
Темп прироста (цепной):
Темп прироста (базисный):
Темп прироста (сокращения) можно получить и из темпа роста, выраженного в процентах, если из него вычесть 100%.
Явления общественной жизни, изучаемые социально-экономической статистикой, находятся в непрерывном изменении и развитии. С течением времени – от месяца к месяцу, от года к году – изменяются численность населения и его состав, объем производимой продукции, уровень производительности труда и т. д., поэтому одной из важнейших задач статистики является изучение изменения общественных явлений во времени – процесса их развития, их динамики. Эту задачу статистика решает путем построения и анализа рядов динамики (временных рядов).
Ряд динамики (хронологический, динамический, временной ряд) – это последовательность упорядоченных во времени числовых показателей, характеризующих уровень развития изучаемого явления. Ряд включает два обязательных элемента: время и конкретное значение показателя (уровень ряда).
При подведении итогов статистического наблюдения получают абсолютные показатели двух видов. Одни из них характеризуют состояние явления на определенный момент времени. К таким показателям относится численность населения, парк автомобилей, жилищный фонд, товарные запасы и т. д
Другие показатели характеризуют итоги какого-либо процесса за определенный период (интервал) времени (сутки, месяц, квартал, год и т. п.). Такими показателями являются, например, число родившихся, количество произведенной продукции, ввод в действие жилых домов, фонд заработной платы и др.
Иногда путем последовательного сложения уровней интервального ряда за примыкающие друг к другу интервалы времени строится ряд нарастающих итогов. Такие нарастающие итоги нередко приводятся в бухгалтерских и других отчетах предприятий.
При изучении динамики общественных явлений статистика решает следующие задачи:
• измеряет абсолютную и относительную скорость роста либо снижения уровня за отдельные промежутки времени;
• дает обобщающие характеристики уровня и скорости его изменения за тот или иной период;
• выявляет и численно характеризует основные тенденции развития явлений на отдельных этапах;
• дает сравнительную числовую характеристику развития данного явления в разных регионах или на разных этапах;
• выявляет факторы, обусловливающие изменение изучаемого явления во времени;
• делает прогнозы развития явления в будущем.
25. Понятие рядов динамики (временных рядов)
Одной из важнейших задач статистики является изучение изменений анализируемых показателей во времени, то есть их динамика. Эта задача решается при помощи анализа рядов динамики (временных рядов).
Ряд динамики (или временной ряд) – это числовые значения определенного статистического показателя в последовательные моменты или периоды времени (т.е. расположенные в хронологическом порядке).
Числовые значения статистического показателя, составляющего ряд динамики, называют уровнями ряда. Первый член ряда y1 называют начальным или базисным уровнем, а последний yn – конечным. Периоды времени, к которым относятся уровни, обозначают через t.
Ряды динамики, как правило, представляют в виде таблицы или графика, причем по оси абсцисс строится шкала времени t, а по оси ординат – шкала уровней ряда y.
Виды рядов динамики
Ряды динамики классифицируются по следующим основным признакам:
1. По времени — ряды моментные и интервальные (периодные), которые показывают уровень явления на конкретный момент времени или на определенный его период. Сумма уровней интервального ряда дает вполне реальную статистическую величину за несколько периодов времени, например, общий выпуск продукции, общее количество проданных акций и т.п. Уровни моментного ряда, хотя и можно суммировать, но эта сумма реального содержания, как правило, не имеет. Так, если сложить величины запасов на начало каждого месяца квартала, то полученная сумма не означает квартальную величину запасов.
2. По форме представления — ряды абсолютных, относительных и средних величин.
3. По интервалам времени — ряды равномерные и неравномерные (полные и неполные), первые из которых имеют равные интервалы, а у вторых равенство интервалов не соблюдается.
4. По числу смысловых статистических величин — ряды изолированные и комплексные (одномерные и многомерные). Первые представляют собой ряд динамики одной статистической величины (например, индекс инфляции), а вторые — нескольких (например, потребление основных продуктов питания).
27. Выравнивание ряда динамики
1. выбирают тип уравнения (форму плавной кривой);
2. вычисляют параметры (коэффициенты) этого уравнения;
К выравниванию рядов динамики прибегают, чтобы получить уравнение (и плавную линию), выражающее тенденцию развития процесса во времени (t)
28. Статистический индекс
– относительная величина, показывающая во сколько раз уровень изучаемого явления в данных условиях отличается от уровня того же явления в других условиях. Различие условий может проявляться во времени (тогда получается индекс динамики), в пространстве (территориальный индекс), в выборе в качестве базы сравнения планового показателя (индекс выполнения плана) и т.п.
Индекс, который строится как сравнение обобщенных величин, называется общим (сводным) и обозначается I. Если же сравниваются необобщенные величины, то индекс называется индивидуальным и обозначается i. Как правило, подстрочно ставится значок, показывающий для оценки какой величины построе индекс. Например, Iq и iq – это общий и индивидуальный индекс для величины q.
В статистике индексы используются не только для сопоставления уровней изучаемого явления, но и для определения экономической значимости факторов, объясняющих абсолютное различие сравниваемых уровней.
Индивидуальные индексы
Относительная величина, получаемая при сравнении уровней, называется индивидуальным индексом, если не имеет значения структура изучаемого явления. Индивидуальные индексы обозначаются i. Расчет индивидуальных индексов прост: их определяют вычислением отношения двух индексируемых величин, то есть по формуле
Агрегатный индекс
Например, общую сумму выручки можно записать в виде агрегата (суммы произведений объемного показателя q на взвешивающий – p), т.е.
1. Динамика социально-экономических явлений и задачи ее статистического изучения
Явления общественной жизни, изучаемые социально-экономической статистикой, находятся в непрерывном изменении и развитии. С течением времени – от месяца к месяцу, от года к году – изменяются численность населения и его состав, объем производимой продукции, уровень производительности труда и т. д. Поэтому одной из важнейших задач статистики является изучение изменения общественных явлений во времени – процесса их развития, их динамики. Эту задачу статистика решает путем построения и анализа рядов динамики (временных рядов).
Ряд динамики (хронологический, динамический, временной ряд) – это последовательность упорядоченных во времени числовых показателей, характеризующих уровень развития изучаемого явления. Ряд включает два обязательных элемента: время и конкретное значение показателя (уровень ряда).
Каждое числовое значение показателя, характеризующее величину, размер явления, называется уровнем ряда. Кроме уровней, каждый ряд динамики содержит указания о тех моментах либо периодах времени, к которым относятся уровни.
При подведении итогов статистического наблюдения получают абсолютные показатели двух видов. Одни из них характеризуют состояние явления на определенный момент времени: наличие на этот момент каких-либо единиц совокупности или наличие того или иного объема признака. К таким показателям относится численность населения, парк автомобилей, жилищный фонд, товарные запасы и т. д. Величину таких показателей можно определить непосредственно только по состоянию на тот или иной момент времени, а потому эти показатели и соответствующие ряды динамики и называются моментными.
Другие показатели характеризуют итоги какого-либо процесса за определенный период (интервал) времени (сутки, месяц, квартал, год и т. п.). Такими показателями являются, например, число родившихся, количество произведенной продукции, ввод в действие жилых домов, фонд заработной платы и др. Величину этих показателей можно подсчитать только за какой-нибудь интервал (период) времени. Поэтому такие показатели и ряды их значений называются интервальными.
Из различного характера интервальных и моментных абсолютных показателей вытекают некоторые особенности (свойства) уровней соответствующих рядов динамики. В интервальном ряду величина уровня, представляющего собой итог какого-либо процесса за определенный интервал (период) времени, зависит от продолжительности этого периода (длины интервала). При прочих равных условиях уровень интервального ряда тем больше, чем больше длина интервала, к которому этот уровень относится.
В моментных же рядах динамики, где тоже есть интервалы (промежутки времени между соседними в ряду датами), величина того или иного конкретного уровня не зависит от продолжительности периода между соседними датами.
Каждый уровень интервального ряда уже представляет собой сумму уровней за более короткие промежутки времени. При этом единица совокупности, входящая в состав одного уровня, не входит в состав других уровней. Поэтому в интервальном ряду динамики уровни за примыкающие друг к другу периоды времени можно суммировать, получая итоги (уровни) за более продолжительные периоды (так, суммируя месячные уровни, получим квартальные, суммируя квартальные – получим годовые, суммируя годовые – многолетние).
Иногда путем последовательного сложения уровней интервального ряда за примыкающие друг к другу интервалы времени строится ряд нарастающих итогов, в котором каждый уровень представляет собой итог не только за данный период, но и за другие периоды начиная с определенной даты (с начала года и т. д.). Такие нарастающие итоги нередко приводятся в бухгалтерских и других отчетах предприятий.
В моментном динамическом ряду одни и те же единицы совокупности обычно входят в состав нескольких уровней. Поэтому суммирование уровней моментного ряда динамики само по себе не имеет смысла, так как получающиеся при этом итоги лишены самостоятельной экономической значимости.
Выше говорилось о рядах динамики абсолютных величин, являющихся исходными, первичными. Наряду с ними могут быть построены ряды динамики, уровни которых являются относительными и средними величинами. Они также могут быть либо моментными, либо интервальными.
В интервальных рядах динамики относительных и средних величин непосредственное суммирование уровней само по себе лишено смысла, так как относительные и средние величины являются производными и исчисляются путем деления других величин.
При построении и перед анализом ряда динамики нужно прежде всего обратить внимание на то, чтобы уровни ряда были сопоставимы между собой, так как только в этом случае динамический ряд будет правильно отражать процесс развития явления. Сопоставимость уровней ряда динамики – это важнейшее условие обоснованности и правильности выводов, полученных в результате анализа этого ряда. При построении динамического ряда надо иметь в виду, что ряд может охватывать большой период времени, в течение которого могли произойти изменения, нарушающие сопоставимость (территориальные изменения, изменения круга охвата объектов, методологии расчетов и т. д.).
При изучении динамики общественных явлений статистика решает следующие задачи:
1) измеряет абсолютную и относительную скорость роста либо снижения уровня за отдельные промежутки времени;
2) дает обобщающие характеристики уровня и скорости его изменения за тот или иной период;
3) выявляет и численно характеризует основные тенденции развития явлений на отдельных этапах;
4) дает сравнительную числовую характеристику развития данного явления в разных регионах или на разных этапах;
5) выявляет факторы, обусловливающие изменение изучаемого явления во времени;
6) делает прогнозы развития явления в будущем.
Данный текст является ознакомительным фрагментом.
- Выборочное наблюдение – наблюдение с помощью специальных методов отбора
- Обследование основного массива – наблюдение за частью наиболее крупных единиц в исследуемой совокупности
- Монографическое наблюдение или обследование – подробное описание отдельных единиц наблюдения в статистической совокупности (изучение новых методов управления, инновационных подходов и т.п.)
Способы опроса – Саморегистрация, Экспедиционный опрос, Корреспондентский опрос
Мониторинг — специальное организованное систематическое наблюдение за состоянием явлений и процессов, объектов совокупности (процесс непрерывного слежения)
Процесс статис наблюдения — определяется цель статистического наблюдения, устанавливается объект и единица наблюдения, разрабатывается инструментарий, определяется круг признаков «характеризующих единицу наблюдения, по которым производится регистрация данных, разрабатывается программа статистического наблюдения , обосновывается вид и метод проведения наблюдения, разрабатывается инструкция для заполнения бланков
Программа стат иссл – содержит конкретные вопросы, на которые необходимо дать ответ в статистическом формуляре
Объект наблюдения совокупность социально — экономических процессов, подлежащих обследованию.
Единица наблюдения – элемент совокупности, по которому собирается необходимые данные
Критический момент – момент, по состоянию, на которое собирается информация
Методы контроля — Счетный (арифметический) – повторение расчетов и проверка итоговых сумм, четко устанавливается наличие ошибок. Может выполнятся непрофессионалами. Логический проводится путем сопоставления данных с данными прошлых периодов, по аналогичным объектам, территориям, по разноименным показателям, относящимся к одному объекту. Выполняется профессионалами.
Ошибки — По источнику происхождения(преднамеренные (злостные), непреднамеренные) По характеру:(случайные, систематические, презентативности (представительности)
Случайные ошибки — регистратора, небрежность в заполнении документации, неточность измерительных приборов, использование неверных формул средних и индексов Данные ошибки имеют свойство взаимопогашаться
Систематические ошибки — погрешности измерительных приборов, округление данных, забывчивость опрашиваемых и т.п. Данные ошибки имеют свойство накапливаться Сводка статистических данных — систематизация и обобщение материалов статистического наблюдения, подсчет числа единиц в группах и подгруппах, выделенных при группировке, и подведение итогов по количественным признакам ГРУППИРОВКА СТАТИСТИЧЕСКИХ ДАННЫХ — это расчленение единиц статистической совокупности на группы, однородные в каком – либо существенном отношении. Различают три вида группировки в зависимости от решаемых ими задач Задачи статистической группировки- 1 задача. Разделение совокупности на качественно однородные группы – выявление социально-экономических типов. Это группировки типологические (например, предприятий по формам собственности, продукции по видам, населения по социальным группам и т.п.) 2 задача. Характеристика структуры явления и структурных сдвигов. Это структурная группировка. Например, изучение структуры населения по полу, возрасту и т.п. 3 задача. Изучение взаимосвязей между отдельными признаками изучаемого явления. Такие группировки называются аналитическими (например, группировка рабочих по нормам выработки для установления влияния на размер заработной платы)
Разновидности группировочных признаков – атрибутивный, количественный
Относительная величина координации — соотношение между частями ( i, j, …) целого. В качестве базы сравнения принимается значение показателя, преобладающего в общем объеме совокупности.
Относительная величина наглядности — Соотношение одноименных показателей, относящихся к одному и тому же периоду (моменту) времени, но по разным объектам или территориям (a,b)
Относительные величины интенсивности — Являются именованными числами и показывают итог числителя, приходящийся на одну, десять или сто единиц показателя. Например, производительность труда
Средняя величина — обобщающий показатель, характеризующий типичный уровень варьирующего (изменяющегося) количественного признака на единицу совокупности в определенных условиях места и времени
Условия расчета средних 1)Расчет должен осуществляться по качественно однородной совокупности2)Для исчисления средних должны быть использованы массовые данные Средняя величина именована, т.е. имеет ту же единицу измерения, что и осредняемый показатель
Свойства средней арифметической 1. Сумма отклонений индивидуальных значений признака от средней арифметической равна 0. 2. Если все осредняемые варианты уменьшить или увеличить на постоянное число А, то средняя арифметическая уменьшится или увеличится на эту же величину. 3. Если все варианты значений признака уменьшить или увеличить в А раз, то средняя также соответственно уменьшится или увеличится в А раз. 4. Если все веса уменьшить или увеличить в А раз, то средняя арифметическая не изменится. Вариация — колеблемость, многообразие, изменяемость величины признака у единиц совокупности Ряды показателей:первичные;ранжированные, вариационные Первичный ряд
i | 1 | 2 | 3 | … | n |
xi | x1 | x2 | x3 | … | xn |
Дискретный ряд i=1…k
xi | x1 | x2 | x3 | … | n |
ni | n1 | n2 | n3 | … | xn |
xi-1—xi | x0-x1 | x1-x2 | x2-x3 | … | xk-1-xk |
ni | n1 | n2 | n3 | … | nk |
Динамический ряд -это ряд показателей, изменяющихся во времени y1 y2 y3 … yn –- уровни динамического ряда Виды рядов: моментные(на определенную дату); интервальные(в каком-либо году) Расчет цепных и базисных показателей динамики: абсолютный прирост, относ прирост, темп прироста – отношение абсолютного прироста к абсолютному уровню, принятому за базу (к предыдущему уровню ряда), Абсолютное значение одного % прироста –отношение абсолютного прироста к темпу прироста
1. Расчет среднего абсолютного уровня
для интервального ряда
а) с равноотстоящими уровнями (yi – уровни ряда,n – число интервалов)
для моментного ряда
а) с равноотдаленными моментами в случае периодического учета пользуются формулой средней хронологической (n-число моментов учета):
для моментного ряда
с неравноотдаленными моментами в случае непрерывного учета:
для моментного ряда
с неравноотдаленными моментами в случае периодического учета пользуются формулой средней хронологической взвешенной
Расчет среднего абсолютного прироста
Расчет среднего темпа роста
а) для интервального ряда с равными интервалами (Tpi – цепные темпы роста k – число цепных темпов n – число интервалов времени)
Укрупнение интервалов динамического ряда. Первоначальный ряд динамики преобразуется и заменяется другим, показатели которого относятся к большим по продолжительности периодам времени. Вновь созданный ряд может содержать либо абсолютные величины за укрупненные по продолжительности промежутки времени (получается путем суммирования уровней первичного ряда абсолютных величин), либо средние величины.
Метод скользящей средней. Суть метода заключается в замене абсолютных данных средними арифметическими за определенные периоды. Расчет средних ведется способом скольжения, т.е. постепенным исключением из принятого периода скольжения первого уровня и включением следующего. При этом предварительно выбирают интервал сглаживания (обычно нечетное число уровней – 3,5,…). Расчет удобно представить в таблице.
Аналитическое выравнивание динамических рядов Основное содержание данного метода заключается в том, что основная тенденция развития ytрассчитывается как функция времени: yti = f(ti)Определение теоретических (расчетных) уровней yti производится на основе адекватной математической функции, которая наилучшим образом отображает тенденцию ряда динамики.
Читайте также: