Токсины растений и их алкалоиды

Добавил пользователь Евгений Кузнецов
Обновлено: 21.12.2024

Токсины растений и их алкалоиды

Содержащиеся в растениях токсичные вещества относятся к немногочисленным обширным группам химических соединений. В общих чертах среди них можно выделить алкалоиды, гликозиды, белки и белковоподобные вещества, органические кислоты, спирты, смолы и резиноиды (включая фенольные), минеральные токсины и неорганические соединения.

а) Алкалоиды растений:

1. Тропановые или атропиновые, например из красавки (Atropa), дурмана (Datura), белены (Hyoscyamus), мандрагоры (Mandragora) и коки (Erythroxylum).
2. Пирролизидиновые, например из крестовника (Senecio), синяка (Echium) и гелиотропа (Heliotropium).
3. Пиридиновые и пиперидиновые, например из болиголова (Conium) и лобелии (Lobelia).
4. Никотинового типа (пиридиновые), например из табака (Nicotiana) и хвоща (Equisetum).
5. Кофеинового типа (пуриновые), например в кофе (Coffea), шоколаде, "коле" и какао (Theobroma), а также чае (Camellia).

6. Хининового типа (хинолиновые), например из хинного дерева (Cinchona) и мордовника (Echinops).
7. Опийного или морфинового типа (изохинолиновые), например из мака (Papaver), волчьей стопы (Sanguinaria), дицентры (Dicentra), желтокорня (Hydrastis) и хохлатки (Corydalis).
8. Индольные или индолизидиновые, как в спорынье (Claviceps), грибах из рода псилоцибе (Psilocybe), астрагале (Astragalus), гельземиуме (Gelsemium) и чилибухе (Strychnos).
9. Цитизинового типа (хинолизидиновые), например из люпина (Lupinus), золотого дождя (Laburnum), баптизии (Baptisia), ракитника (Cytisus) и гимнокладуса (Gymnocladus).
10. Соланинового типа (стероидные гликоалкалоиды), например из томатов (Lycopersicon), картофеля (Solaпит tuberosum) и пасленов (Solanum spp.,)

11. Стероидные, например из черемицы (Veratrum) и зигаденуса (Zigadenus).
12. Дитерпеноидные, например из живокости (Delphinium) и борца (Aconitum).
13. Мескалинового типа (фенилаланиновые), например из кактуса лофофоры (Lophophora) и хвойника (Ephedra).

б) Гликозиды растений:
1. Цианогенные, у которых агликоном является синильная кислота (например, амигдалин в семенах вишни, абрикоса, персика, яблок и миндаля), дающие при гидролизе сахар, цианид и бензальдегид. Амигдалин из размолотого абрикосового семени является летрилом (левовращаюшим гликозидным нитрилом).
2. Стероидные: сахар связан со стероидной молекулой, (а) Сердечные гликозиды (Антиаритмические лекарственные средства), например из наперстянки пурпуровой (Digitalis purpurea, дигоксин), ландыша (Convallaria), строфанта (Strophantus, уабаин), кутры (Аросупит), ваточника (Asclepias) и олеандра (Nerium). (б) Сапониновые (сапогенные) гликозиды, например из лаконоса (Phytolacca) и плюща (Hebera). Они вызывают раздражение желудка, а их агликоны оказывают гемолитическое действие.
3. Кумариновые: сахар связан с кумариновым агликоном, например, в конском каштане голом (Aesculus glabra) и донниках (Melilotus spp.). Это антикоагулянты.
4. Антрахиноновые, в частности из горчичного масла: раздражают желудочно-кишечный тракт и дают слабительный эффект.

в) Белки и белковоподобные соединения растений:
1. Белки: фитотоксины (токсальбумины), например абрин из семян абруса ненадежного (Abrus precatorius) и рицин из семян клещевины обыкновенной (Ricinus communis).
2. Полипептиды: аматоксины, фаллотоксины и фаллоидины из бледной поганки (Amanita phalloides).
3. Амины: например, в чине (Lathyrus) аминопропионитрил, вызывающий дегенерацию двигательных путей в спинном мозге (латиризм), а в ягодах омелы тирамин и фенилэтиламин, приводящие к острому гастроэнтериту и сердечно-сосудистому коллапсу.

г) Оксалаты растений. Листья, стебли и корни многих растений содержат оксалаты. В листьях ревеня содержится до 1 % растворимых оксалатов калия и натрия. К растениям, содержащим в листьях много нерастворимого оксалата кальция, относятся диффенбахия, филодендрон и щавель.

Нерастворимые кристаллы оксалата кальция, так называемые рафиды, собраны пачками в удлиненных идиобластах, откуда эти иглы "выстреливаются", как ракеты, при нажатии, например, когда лист жуют. Выше всего концентрация оксалатов в гречишных (Rheum, Rumex), маревых (Halogetin, Glomeratus), шпинате, кислице (Oxalis cirnua), портулаковых (Portulaca) и аизооновых (Tetragonia).

Поедание небольшого количества растительных тканей, богатых оксалатами, обычно вызывает лишь слабое раздражение слизистой оболочки рта и пищевода. Высокие дозы растворимых оксалатов (в шпинате, диффенбахии, ревене) чреваты более выраженными желудочно-кишечными симптомами.

д) Спирты. Цикутоксин из веха пятнистого (Cicuta maculata) вызывает судороги, а трематол из посконника морщинистого (Eupatorium nuosum) — "трясучку" у крупного рогатого скота.

е) Смолы и резиноиды:
- Фенольные смолы. Тетрагидроканнабинол из конопли посевной (Cannabis sativa).
- Резиноиды. Урушиол из сумаха и гиперицин из зверобоя продырявленного (Hypericum perforatum).
- Фенольные пигменты. Госсипол из семян хлопчатника (Gossypium), оказывающий контрацептивное действие на самцов.
- Минеральные токсины. Некоторые сорняки, например марь белая (Chenopodium album) и щирица (Amaranthus sppj, аккумулируют нитрат калия.

Токсины растений, грибов и водорослей

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Природные токсины в продуктах питания

Природные токсины – это токсичные вещества природного происхождения, вырабатываемые некоторыми видами живых организмов. Эти токсины не опасны для вырабатывающих их организмов, но могут быть токсичны для других, в том числе для человека, в случае их приема с пищей. Эти химические вещества имеют разнообразную структуру и различаются по биологической функции и степени токсичности.

Некоторые токсины вырабатываются растениями и играют роль защитного механизма против хищников, насекомых или микроорганизмов или же образуются в результате поражения растений микроорганизмами, такими как плесневые грибы, вследствие климатического стресса (засуха или чрезвычайно высокая влажность).

Другими источниками природных токсинов являются микроскопические водоросли и планктон, обитающие в океанах и иногда озерах и вырабатывающие химические вещества, токсичные для человека, но не для рыб или моллюсков, питающихся этими организмами. В случае употребления человеком рыбы или моллюсков, содержащих эти токсины, может быстро наступить неблагоприятная реакция.

Ниже приводится описание некоторых природных токсинов, наиболее часто встречающихся в продуктах питания и создающих угрозу для нашего здоровья.

Биотоксины, вырабатываемые водными организмами

Токсины, вырабатываемые морскими и пресноводными водорослями, называются водорослевыми. Эти токсины продуцируются некоторыми видами водорослей в период цветения. Вероятность содержания этих токсинов в моллюсках, таких как мидии, устрицы и гребешки, выше, чем в рыбе. Водорослевые токсины могут вызывать диарею, рвоту, ощущение покалывания в конечностях, паралич и другие эффекты у человека, других млекопитающих и рыб. Они могут накапливаться в организме моллюсков и рыбы или заражать питьевую воду. Они не имеют цвета и запаха и не разрушаются в процессе термической обработки или при замораживании.

Еще одним примером является сигуатера, или отравление в результате употребления в пищу рыбы, зараженной сигуатоксином – веществом, вырабатываемым динофлагеллятами – водными одноклеточными организмами. Сигуатоксин накапливается в организме таких рыб, как барракуда, черный групер, луциан-собака и королевская макрель. Симптомами сигуатеры являются тошнота, рвота и неврологические симптомы, такие как ощущение покалывания в пальцах рук и ног. В настоящее время лечения при отравлении сигуатоксином нет.

Цианогенные гликозиды

Цианогенные гликозиды – это фитотоксины (т.е. токсические соединения, вырабатываемые растениями), встречающиеся в составе по меньшей мере 2000 видов растений, многие из которых употребляются в пищу в некоторых регионах мира. К наиболее массово потребляемым продуктам питания, содержащим цианогенные гликозиды, относятся кассава, сорго, ядра косточковых плодов, корни бамбука и миндаль. Токсический потенциал цианогенного растения зависит, главным образом, от того, насколько высокой будет концентрация цианида в организме человека в результате его употребления в пищу. У человека острая интоксикация цианидами может иметь следующие клинические признаки: учащение дыхания, падение кровяного давления, головокружение, головная боль, боль в животе, рвота, диарея, спутанность сознания, цианоз, сопровождаемый фибриллярными мышечными сокращениями и судорогой, после чего наступает терминальная кома. Смерть в результате отравления цианидами может происходить при достижении ими концентраций, превышающих метаболические способности конкретного организма.

Фуранокумарины

Эти токсины продуцируются разнообразными растениями, такими как пастернак (растение, родственное моркови и петрушке), корнеклубнях сельдерея, цитрусовых (лимон, лайм, грейпфрут, бергамот) и некоторые лекарственные растения. Фуранокумарины – токсины, вырабатываемые растением в ответ на раздражитель, например, физическое повреждение. У чувствительных людей эти токсины могут вызвать нарушения работы желудочно-кишечного тракта. Фуранокумарины обладают фотосенсибилизирующим действием и могут вызывать серьезные раздражения кожи под воздействием ультрафиолета. Чаще всего такие реакции возникают при попадания сока этих растений на кожу, однако описаны случаи аналогичного эффекта в результате употребления в пищу больших количеств овощей, богатых фуранокумаринами.

Лектины

Многие бобы содержат токсины, называемые лектинами. В наибольшей концентрации они присутствуют в фасоли, особенно красной. Всего 4 или 5 сырых бобов могут спровоцировать сильную боль в животе, рвоту и диарею. Лектины разрушаются при замачивании сушеных бобов в течение по меньшей мере 12 часов и их варке на сильном огне в течение не менее 10 минут. Консервированная фасоль уже подвергалась такой обработке и может употребляться в пищу в готовом виде.

Микотоксины

Микотоксины – это токсичные вещества природного происхождения, вырабатываемые некоторыми видами плесневых грибов. Плесневые грибы растут на целом ряде видов продовольственной продукции, таких как злаки, сухофрукты, орехи и специи. Появление плесени может иметь место как до, так и после уборки урожая, на этапе хранения и/или на готовых продуктах питания в условиях благоприятной температуре и высокой влажности.

Большинство микотоксинов отличается химической стабильностью и не разрушается в процессе термической обработки. Присутствующие в продуктах питания микотоксины могут вызывать острую интоксикацию, симптомы которой развиваются вскоре после употребления сильно контаминированных продуктов питания и даже могут привести к летальному исходу. Хроническое потребление микотоксинов с продуктами питания может оказывать долгосрочное негативное воздействие на здоровье, в частности, провоцируя онкологические заболевания и иммунодефицит.

Соланин и чаконин

Все растения семейства пасленовых, к которому относятся томаты, картофель и баклажаны, содержат природные токсины соланин и чаконин (гликоалкалоиды). Как правило, концентрация этих веществ в растениях невысока. Тем не менее, в более высокой концентрации они присутствуют в побегах картофеля и кожуре и зеленоватых частях его клубней, имеющих горький привкус, а также в зеленых томатах. Растения вырабатывают токсин в ответ на внешний раздражитель, такой как механическое повреждение, ультрафиолетовое излучение, колонизация микроорганизмами и нападение со стороны насекомых-вредителей и травоядных животных. Для предупреждения возникновения соланина и чаконина в картофеле важно хранить клубни в темном, прохладном и сухом месте. Также не рекомендуется употреблять в пищу позеленевшие или пускающие ростки части клубней.

Ядовитые грибы

Дикорастущие грибы могут содержать ряд токсинов, например, мусцимол и мускарин, которые могут вызывать рвоту, диарею, спутанность сознания, нарушения зрения, повышенное слюноотделение и галлюцинации. Симптомы начинают проявляться через 6–24 часа после употребления грибов в пищу. Обычно для смертельного отравления характерно позднее развитие тяжелых симптомов, свойственных поражению печени, почек и нервной системы. Чистка и термическая обработка грибов не позволяют ликвидировать содержащиеся в них токсины. Рекомендуется избегать употребления в пищу любых дикорастущих грибов при отсутствии полной уверенности в их безвредности.

Пирролизидиновые алкалоиды

Пирролизидиновые алкалоиды (ПА) – это токсины, которые вырабатывают около 600 растений. В наибольшем количестве их продуцируют растения семейств бурачниковые, астровые и бобовые. Многие из этих растений – сорняки, растущие на сельскохозяйственных угодьях и засоряющие продовольственные культуры. ПА вызывают широкий спектр негативных эффектов. Они могут обладать острой токсичностью. В этой связи главным источником беспокойства является способность некоторых ПА повреждать ДНК клеток, что может провоцировать онкологические заболевания.

ПА не разрушаются в процессе термической обработки. Они обнаруживаются в травяных сборах, меде, ароматических травах и специях и других видах продовольственной продукции, таких как злаки и продукты на их основе. Тем не менее, уровень их потребления людьми считается низким. Ввиду сложности вопроса и большого числа таких соединений общий риск для здоровья в полной мере еще не определен. Комитет Кодекса ФАО/ВОЗ по загрязняющим примесям в продуктах питания ведет разработку рекомендаций по предупреждению попадания содержащих ПА растений в продовольственную цепочку.

Что могу сделать я для снижения риска, связанного с природными токсинами?

Важно помнить, что природные токсины могут присутствовать в целом ряде культур и продуктах питания. В нормальном сбалансированном здоровом рационе концентрация природных токсинов намного ниже порогов острого и хронического токсического действия.
Для снижения риска для здоровья, связанного с присутствием природных токсинов в продуктах питания, рекомендуется:

• не думать, что все «природное» по определению безвредно;

• выбрасывать поврежденные, мятые, изменившие цвет и, в частности, плесневые продукты питания;

• выбрасывать продукты питания, которые на запах или вкус не являются свежими или имеют непривычный вкус;

• употреблять в пищу только те грибы или дикие растения, которые точно не являются ядовитыми.

Деятельность ВОЗ

ВОЗ в сотрудничестве с ФАО отвечает за оценку риска, который представляют природные токсины для человека в результате контаминации продуктов питания, и выработку рекомендаций по обеспечению необходимой защиты.

Оценка риска в связи с присутствием природных токсинов в продуктах питания выполняется Комитетом экспертов ФАО/ВОЗ по пищевым добавкам (JECFA) и используется правительствами стран и Комиссией Кодекс Алиментариус (нормативным межправительственным органом по пищевым стандартам) для определения предельных допустимых значений концентрации различных примесей в продуктах питания или выработки других рекомендаций по управлению рисками в интересах предотвращения или снижения контаминации. Стандарты Кодекса являются международным ориентиром для национальных производителей продовольствия и торговли продовольствием и призваны гарантировать потребителям во всем мире, что приобретаемые ими продукты питания соответствуют установленным стандартам безопасности и качества, где бы они ни были произведены.

JECFA устанавливает предельно допустимые уровни потребления различных природных токсинов.
В состав JECFA или специальных научных экспертных групп ФАО/ВОЗ входят независимые международные эксперты, которые проводят научные обзоры всех опубликованных исследований и других данных по отдельным природным токсинам. По итогам этой работы по оценке риска для здоровья устанавливаются либо предельные допустимые уровни потребления или формулируются другие рекомендации для обозначения степени опасности для здоровья (например, пределы экспозиции). Выдвигаются рекомендации относительно управления рисками и мер по предотвращению и снижению контаминации, а также аналитических методов и мероприятий по мониторингу и контролю.
Во избежание нанесения ущерба здоровью людей содержание природных токсинов в продуктах питания должно быть максимально низким. Природные токсины не только являются источником риска для здоровья человека и животных, но и негативно воздействуют на ситуацию с продовольственной безопасностью и питанием, поскольку ограничивают доступ людей к здоровой пище. ВОЗ настоятельно рекомендует национальным органам власти вести мониторинг содержания наиболее значимых природных токсинов в продовольственной продукции, реализуемой на их рынке, и принимать меры для максимального его сокращения и обеспечивать соблюдение международных рекомендаций по предельно допустимым значениям, условиям хранения и законодательству.

Токсины высших растений

Огромное количество веществ, токсичных для млекопитающих, человека и других живых существ, синтезируется растениями (фитотоксины). Являясь продуктами метаболизма растений, фитотоксины порой выполняют защитные функции, отпугивая потенциальных консументов. Однако по большей части их значение для жизнедеятельности растения остается неизвестным. Фитотоксины представляют собой вещества с различным строением и неодинаковой биологической активностью. Среди них алкалоиды, органические кислоты, терпеноиды, липиды, гликозиды, сапонины, флавоноиды, кумарины.

Особенно распространены алкалоиды. Это азотсодержащие органические гетероциклические соединения. В настоящее время известно несколько тысяч алкалоидов, многие из которых обладают высокой токсичностью для млекопитающих и человека (табл. 2.1).

Таблица 2.1. Основные группы алкалоидов, продуцируемые растениями

Растения – продуценты

Конин, никотин, лобелин

Болиголов, табак, лобелия

Гликозиды - соединения, представляющие собой продукты конденсации циклических форм моно - или олигосахаридов со спиртами (фенолами), тиолами, аминами и т.д. Неуглеводная часть молекулы называется агликоном, а химическая связь агликона с сахаром - гликозидной. Гликозидная связь достаточно устойчива и не разрушается в водных растворах веществ. Наиболее известны сердечные (стероидные) гликозиды, в которых в качестве агликона выступают производные циклопентанпергидрофенантрена. Эти соединения, продуцируемые растениями самых разнообразных видов, например, наперстянки пурпурной, обладают высокой токсичностью, обусловленной отчасти избирательным действием на сердечную мышцу.

С лечебной целью применяют:

строфантин – смесь сердечных гликозидов, выделяемых из семян строфанта Комбе (Strophanthus Kombe Oliver) семейства кутровых (Аросупасеае), имеет кардиотоническое действие;

дигитоксин, получают из разных видов наперстянки (Digitális), используют при хронической сердечной недостаточности;

цимарин, обладает противоопухолевыми свойствами, получают из экстракта из кендыря коноплевого (Trachomitum), горицвета весеннего (Adonis), некоторые виды строфанта и др.


Сапонины

это высокомолекулярные сложные органические соединения гликозидного характера, обладающие специфическими свойствами: водные растворы из сырья, содержащего сапонины, образуют обильную пену. Обладают физическими свойствами мыла.

Название «сапонин» (от лат. sapo - мыло) впервые появилось в 1819 г., когда из мыльнянки (Saponaria, растение семейства гвоздичных) было выделено вещество, образующее с водой обильное количество пены. Сапонины довольно часто встречаются у представителей семейства гвоздичных и розовоцветных. Они также содержатся в первоцвете весеннем, солодке, истоде (тонколистный и сибирский), хвощах, аралии, диоскореи, патринии (накапливают сапонины в корневой части); наперстянке (листве).

В физиологическом отношении многие сапонины представляют собой сильно ядовитые вещества, убивающие клетку. Сапонины действуют на организм характерным образом:

попадая на слизистую носа, вызывают чихание, больших дозах вызывают рвоту, но в малых дозах безвредны;

при попадании в кровь, вызывают гемолиз эритроцитов;

являются смертельным ядом для рыб и холоднокровных (лягушек, рыб, червей), вызывая их гибель даже в разведении 1:1 000 000.

Рисунок 2.2. Структура нитогенина, вещества, образующего сапонин

Сапонины и сапонинсодержащие материалы широко применяются в фармацее, медицине и технике. Они используются как моющие средства, особенно для шелка и других ценных тканей; как яды для рыб и насекомых, в огнетушителях (для стабилизации пены).

Кумарины - кислородсодержащие гетероциклические соединения, обладающие антикоагулянтным и фотосенсибилизирующим (накапливаются в коже и повышают ее чувствительность к воздействию ультрафиолетовых лучей) действием. Известно несколько сот веществ, относящихся к классу кумаринов. Часто это душистые вещества.

Содержатся в растениях семейств зонтичных, рутовых и бобовых. Они применяются как расслабляющие, успокаивающие, желчегонные, дезинфицирующие средства, при лечении тромбов.

Танины (от лат. tanum – кора) обозначают растительные вещества, которые действуют как дубящие агенты. В настой танинов опускают сырые шкуры животных, чтобы превратить их в прочный, не поддающийся гниению продукт – кожу (процесс дубления).

Таннины содержатся в коре, древесине, листьях, плодах (иногда семенах, корнях, клубнях) многих растений – дуба, каштана, акации, ели, лиственницы, эвкалипта, чае, гранатового и хинного деревьев, квебрахо и других; они придают листьям и плодам терпкий вкус.

Многие вещества растительного происхождения широко используются в медицине, например атропин.

Ряд фитотоксинов вызывают вредные пристрастия. Это кокаин, никотин, гармин, морфин. Нередко продукты жизнедеятельности растений являются аллергенами. Отдельные фитотоксины обладают канцерогенной активностью. Например, сафрол и близкие соединения, содержащиеся в черном перце, соланин, обнаруживаемый в проросшем картофеле, хиноны и фенолы, широко представленные в многочисленных растениях. Некоторые токсиканты, содержатся в растениях в ничтожных количествах и могут оказывать токсический эффект лишь в форме специально приготовленных препаратов, другие вызывают интоксикацию при поедании растений их содержащих.

Токсины растений

Огромное количество веществ, токсичных для млекопитающих, человека и других живых существ, синтезируется растениями. Их называют фитотоксинами. Являясь продуктами метаболизма растений, фитотоксины порой выполняют защитные функции, отпугивая потенциальных консументов. Однако по большей части их значение для жизнедеятельности растения остается неизвестным. Фитотоксины представляют собой вещества с различным строением и неодинаковой биологической активностью. Среди них: алкалоиды, органические кислоты, терпеноиды, липиды, гликозиды, сапонины, флавоноиды, кума- рины, антрахиноны и др. (рис. 20).

Особенно многочислен класс алкалоидов.

Сапонины — наиболее часто встречаются в виде стероидов спиростанового ряда и пентациклических терпеноидов. Сапонины обладают раздражающим действием на слизистые оболочки млекопитающих, а при попадании в кровь вызывают гемолиз эритроцитов.

Кумарины — кислородсодержащие гетероциклические соединения, обладающие антикоагулянтным и фотосенсибилизирующим действием. Известно несколько сот веществ, относящихся к классу кума- ринов.

Существуют различные классификации ядовитых растений, основанные, главным образом, на специфике состава или токсического действия биологически активных веществ.

Ядовитыми принято считать те растения, которые вырабатывают токсические вещества — фитотоксины, даже в незначительных количествах вызывающие смерть и поражение организма человека и животных.

Среди всего разнообразия ядовитых растений различают:

  • безусловно ядовитые растения (с подгруппой особо ядовитых);
  • условно ядовитые — токсичные лишь в определенных местах произрастания или при неправильном хранении сырья, ферментативном воздействии грибов и других микроорганизмов.

Рис. 5. 7. Структура некоторых фитотоксинов

Токсичность различных растений может варьировать в зависимости от положения вида в географическом ареале, характера почвы и места обитания, климатических условий года, стадии онтогенеза и фенофазы. Например, такое смертельно ядовитое растение, как чемерица, в некоторых районах Армении и Алтая считается хорошим кормовым видом.

Токсичность астрагалов зависит от содержания в почве селена, которого они могут накапливать до десятых долей процента в составе сухой фитомассы.

Токсические свойства одних и тех же растений не одинаковы по воздействию на различные группы животных. Сильно токсичные для человека белладонна и дурман совершенно безвредны для грызунов, псовых, кур, но вызывают отравление уток и цыплят. Ядовитые ягоды ландыша, поедаемые даже в массовых количествах, не вызывают отравления лисиц. Ядовитые для человека плоды омелы не ядовиты для птиц и т.д.

Ядовитые растения являются причиной большинства случаев отравления человека и животных. При этом особенно следует выделить отравления детей, которых привлекают яркие плоды, сочные корешки, луковицы, стебли.

Как особую форму следует рассматривать так называемые лекарственные отравления при неправильном применении и передозировке препаратов ландыша, наперстянки, адониса, валерианы, чемерицы, лимонника, женьшеня, красавки, аконитов, папоротника мужского, спорыньи и др.

Реже токсическое воздействие оказывает вдыхание ядовитых выделений — дистанционное отравление багульником, ясенцем, хвойными, родендронами, ароидными. Кроме того, могут возникать контактные повреждения кожи и слизистых, протекающие по типу сильных аллергических реакций (крапива, борщевик, ясенец, молочаи, горчицы, болиголов, воронец, волчье лыко, токсикодендрон, рута, бешеный огурец, туя, некоторые примулы). Существуют также производственные отравления людей респираторно-контактного характера при выращивании, заготовке и переработке растительного сырья (табак, белладонна, чемерица, лютиковые, красный перец, чистотел), обработке или химической переработке древесины (все хвойные, токсикодендрон, дуб, бук, ольха, конский каштан, белая акация, бересклеты).

Иногда отравление растительными продуктами связано с употреблением в пищу меда, загрязненного ядовитой пыльцой растений (багульника, рододендрона, хамедафнэ, лавровишни, волчьего лыка, чемерицы, лютиковых, белены, дурмана, красавки, табака, аврана, анабазиса, вороньего глаза, звездчатки злаковидной), а также молока и мяса после поедания животными токсичных растений (лютиковых, эфедры, тисса, посконника, маковых, безвременника, хлопкового жмыха — отравление молока; чемерицы, пикульника, аконитов — отравление мяса). Токсичность молока обусловливают также горькие, ароматические, смолоносные, кремнеземистые и содержащие оксалаты растения — полынь, пижма, пиретрума, тысячелистник, хвощ, молочай, повилика, марьянника, люпин, горец перечный, кислица, дуб, можжевельник. Отравление может наступить при употреблении в пищу и на корм скоту зерна и муки, загрязненных спорыньей, семенами куколя, плевела, живокости, пикульника, белены, гелиотропа, львиного зева, триходесмы. Известны случаи отравления ягодами голубики, на которых сконденсировались токсичные эфирные выделения багульника при их совместном произрастании.

«Й Первая помощь при большинстве отравлений ядовитыми растениями должна сводиться к скорейшему удалению из организма содержимого желудочно-кишечного тракта, приему внутрь адсорбирующих (активированный уголь), осаждающих (танины), окисляющих (перманганат калия), нейтрализующих (сода, кислое питье) и обволакивающих (крахмальная слизь, яичный белок, молоко) веществ. Одновременно следует установить по непереваренным остаткам причину отравления.

ВЫЖИВАНИЕ ЖИВОГО

За последние сто лет окружающий человека мир разительно изменился. Благодаря лавинному развитию науки и технологий в нашу жизнь вошли десятки тысяч неведомых ранее веществ и материалов: синтетические волокна и пластики, лекарства и пищевые добавки, поверхностно-активные вещества и пестициды. Воздух, которым мы дышим, тоже стал другим: на улицах городов мы вынуждены вдыхать автомобильные выхлопы, на промышленных окраинах — выброс предприятий и мусоросжигательных заводов, в помещениях — воздух, прошедший через фильтры кондиционеров. Можно ли в таких условиях сохранить здоровье и родить здоровых детей? На эту тему размышляет биохимик, публицист Жорес Александрович Медведев.

Безвременник, горечавка, ревень, азалия, дурман (слева направо), как и многие дикорастущие растения, содержат алкалоиды.

КРОКОДИЛЬИ СЛЁЗЫ

В американском штате Флорида, недалеко от городка Гэйнсвилл, в котором находится местный университет, есть озеро Апопка. В 1980 году в озеро попали отходы предприятия по производству пестицидов. В течение двух лет погибло 90% всей озёрной фауны, включая обитавших там небольших аллигаторов. Эта экологическая катастрофа стала началом исследовательского проекта по сравнению флоры и фауны озера Апопка и других озёр Флориды.

Вскоре зоологи обнаружили, что самки аллигаторов в озере Апопка откладывают значительно меньше яиц, чем в других, более чистых озёрах. При этом заметили, что у новорождённых самцов средний размер пениса на 25—27% меньше, чем у самцов того же возраста из других водоёмов. Подробные результаты научных исследований были опубликованы лишь в 1996 году. В них отмечалось, что производные пестицида ДДТ (дихлордифенилтрихлорметилметан), попавшего в озеро из резервуара с отходами, тормозят синтез андрогенных (мужских) гормонов, тестостерона и дигидротестостерона и именно это задерживает рост и развитие мужских половых органов. Продукты распада ДДТ накапливаются в жировой ткани животных.

Применение ДДТ в США было запрещено ещё в 1972 году, однако его продолжали производить на экспорт. В большинстве азиатских и африканских стран ДДТ применяется и по сей день, особенно на хлопковых плантациях и для борьбы с малярийным комаром. Это соединение распадается очень медленно и проникает в грунтовые воды.

Проблемы с фертильностью возникают не только у аллигаторов. Авторитетный научный журнал «British Medical Journal» в 1992 году опубликовал обзорную статью, в которой данные говорили о том, что за 50 лет, с 1938 по 1988 год, концентрация сперматозоидов в человеческой сперме снизилась на 40%. При этом средний объём спермы в эякуляте уменьшился с 3,4 до 2,75 мл. Эти выводы основывались на результатах обследования почти 15 тысяч мужчин в возрасте около 30 лет, которые сдавали сперму для искусственного оплодотворения. В таких случаях все показатели здоровья добровольных доноров спермы тщательно проверяются. Авторы обзора предположили, что изменения, наиболее вероятно, связаны с факторами внешней среды.

Публикация британского медицинского журнала стимулировала дополнительные исследования в разных странах. В Шотландии сравнили качество спермы мужчин, родившихся до 1959 года, в 1960—1964 и в 1970—1974 годах. У последней группы мужчин концентрация и подвижность сперматозоидов оказались ниже на 20%, хотя её представители были моложе. Исследования, проведённые в 2008 году в Перу, отчётливо связали снижение качества спермы у перуанских крестьян с использованием фосфорорганических пестицидов. В США наихудшие показатели качества спермы были выявлены в сельскохозяйственных штатах, особенно в Миссури, где широко используются пестициды. Наиболее токсичными для спермы оказались гербициды алахлор и атразин и инсектицид диазинон.

ТОКСИФИКАЦИЯ СЕЛЬСКОГО ХОЗЯЙСТВА

До 1940 года под химизацией сельского хозяйства подразумевалось лишь применение химических удобрений — азотных, фосфорных и калийных. Синтетических пестицидов в практике земледелия ещё не было. Первый, очень эффективный инсектицид ДДТ во время Второй мировой войны применялся в основном для дезинфекции одежды и помещений, госпиталей, казарм, общежитий. Но одним из неизбежных последствий войны стало сокращение во всех воевавших странах крестьянского населения. Промышленность и разрушенные города восстанавливались быстрее, чем сельское хозяйство. Соответственно росла потребность в увеличении производительности полей. Защита растений путём обычной прополки или дополнительных культиваций и севооборотов была слишком трудоёмкой. Появившаяся возможность уничтожать сорняки гербицидами, а насекомых инсектицидами казалась крайне привлекательной.

Об опасности этих ядов для здоровья почти никто не думал. После жестокой войны, во время которой людей десятками миллионов уничтожали всеми возможными способами, вред от пестицидов казался просто смешным. Охраны труда при их применении почти не было. Опрыскивания в большинстве случаев производились сельскохозяйственной авиацией, и облака пестицидного аэрозоля могло относить ветром и в населённые места.

Вскоре на смену крестьянским хозяйствам пришло индустриальное сельскохозяйственное производство с полностью механизированными гигантскими сельхозкорпорациями, заменой традиционных севооборотов монокультурами и применением удобрений и пестицидов. Обработка посевов, садов и даже виноградников пестицидами производилась 10—12 раз за сезон. Появились синтетические химические яды не только для уничтожения сорняков и насекомых, но и для борьбы с грибками (фунгициды), грызунами (родентоциды), птицами (авициды), клещами (митициды), моллюсками (моллюскоциды) и нематодами (нематоциды). Особые химикалии были разработаны для уничтожения личинок и бактерий. Естественно, что все эти вещества загрязняют продовольственные культуры и попадают в пищу. Поскольку избавиться от этого трудно, то появились «допустимые дозы» и «предельно допустимые дозы», которые редко проверяются и часто превышаются. Производство «органических продуктов», появившееся в богатых странах как альтернатива применению пестицидов, пока не изменило динамики заболеваний, связанных с токсификацией сельскохозяйственной продукции. Производство и применение пестицидов в мире продолжают расти, так как урбанизация и сокращение сельского населения распространились на азиатские и африканские страны. В Китае в 1982 году сельское население составляло 79,4% от общего в один миллиард. К 2008 году пропорция сельского населения упала до 56% от общего населения в 1,3 миллиарда. Сельское население сократилось почти на сто миллионов человек, а городское возросло почти на 400 миллионов. В результате Китай стал одним из главных импортёров продовольствия и самым крупным импортёром химических удобрений и пестицидов.

ПРИРОДНЫЕ ТОКСИНЫ —ПРОДУКТ ЭВОЛЮЦИИ

Вещества, негативно влияющие на работу эндокринной системы, получили название «эндокринных разрушителей» (endocrine disruptors). Они имитируют или ингибируют действие тироксина, эстрогена, тестостерона и других гормонов. В программу исследований эндокринных разрушителей стали включать не только пестициды, но и другие вещества, в частности природные токсины.

Первые три миллиарда лет существования жизни на нашей планете органических токсинов в природе не существовало. Эволюция жизни в этот период происходила в водной среде, и отработанные продукты обмена, например аммиак, фильтровались через жабры рыб и быстро поглощались одноклеточными водорослями. Токсины начали появляться лишь после выхода растений на сушу, в палеозойскую эру (примерно между 542 и 250 миллионами лет назад). Первыми наземными животными были насекомые, личинки которых питались в основном листьями растений. Тогда-то растения и научились вырабатывать токсические вещества — алкалоиды — для защиты своих вегетативных органов от прожорливых гусениц.

Практически все дикорастущие растения содержат те или иные алкалоиды. Эволюционная стратегия растений не требует, чтобы эти вещества вызывали гибель врагов — достаточно сделать стебли и листья мало привлекательными или трудными для поедания. Алкалоиды часто имеют горький или кислый вкус, могут раздражать слизистые оболочки, неприятно пахнуть.

При зарождении земледелия в культуру путём отбора вошли в первую очередь растения, которые практически не содержат алкалоидов, — пшеница, рожь, просо, кукуруза, гречиха, соя, горох. В небольших дозах растительные алкалоиды в составе чеснока, лука, перца улучшают вкус пищи и могут служить консервантами. Алкалоид кофеин в составе чая или кофе повышает работоспособность. Но значительное число растительных алкалоидов в больших дозах токсично и даже обладает психотропным или наркотическим действием.

Немало алкалоидов применяют и в медицине (акрихин, атропин, кодеин, стрихнин, эфедрин и сотни других, списки можно найти в любом медицинском справочнике). В больших дозах и они могут быть наркотическими, токсичными или канцерогенными. До 1994 года применение этих соединений в чистом виде подчинялось общему законодательству о применении лекарственных препаратов. В России их продажа контролировалась Министерством здравоохранения, в США — Федеральной администрацией по продовольствию и лекарствам (FDA). Применение алкалоидов в качестве рецептурных лекарств требовало клинических испытаний.

Широкая и довольно быстрая замена природных алкалоидов и антибиотиков синтетическими оставила множество мелких фирм, производивших лекарства на основе растительного сырья, без рынков сбыта. После многолетнего лоббирования Конгресс США в 1994 году отменил медицинский контроль за производством и потреблением всех природных веществ. Конгрессмены посчитали, что природные растительные вещества не могут быть вредными для здоровья. Вскоре аналогичное решение было принято и в России (приказ по Минздраву № 117 от 15 апреля 1997 г.). В США в категорию веществ для свободной продажи вошли: витамины, минеральные элементы, аминокислоты, растительные гормоны, травы и другие ботанические продукты (кроме табака), а также их комбинации. Разрешалось производить и продавать эти вещества в форме капсул, таблеток, порошков и жидкостей. Быстро возникла, по существу, новая отрасль промышленности — «биодобавки к пище», промежуточная между пищевой и фармацевтической. В дополнение к аптекам появилась и сеть «магазинов здоровья». Последствия этого законодательства очень обширны. Ведь свободная продажа растительных алкалоидов и токсинов — это, по существу, перенос их клинических испытаний на всё население той или иной страны. Приведу лишь один пример.

На островах Океании с давних времён известно растение Piper methysticum, или кава-кава. Получаемый из его корней стимулирующий и опьяняющий напиток употреблялся достаточно редко, в основном как церемониальный. В последующем было установлено, что в состав кава-кава входят несколько алкалоидов психотропного действия, которые вызывают расслабление мышц, обладают болеутоляющим и даже снотворным действием. Это действие обеспечивалось алкалоидом, называемым «каваин» или иногда «кавалактон». Напитки кава-кава стали популярны не только в США, но и в Европе. Далеко не сразу обнаружилось, что алкалоиды кава-кава в больших дозах токсичны для печени. В августе 2004 года продажа напитков кава-кава была запрещена в Великобритании, а затем в Германии, во Франции и в Голландии.

ЛЕКАРСТВА, КОТОРЫЕ НЕ ТОЛЬКО ЛЕЧАТ

Когда появились первые синтетические лекарства, о их побочном действии особо не задумывались. Первоначально фармацевтическая промышленность стала налаживать органический синтез уже известных природных лекарств: пенициллина, тетрациклина, резерпина и других. Затем начали появляться и их модификации.

Создание синтетических аналогов природных лекарств имело большие коммерческие преимущества. Природные соединения, даже очищенные от примесей, нельзя было патентовать для эксклюзивных продаж. Синтетические лекарства патентовались на длительные сроки и продавались по высоким ценам, обеспечивая фармацевтическим предприятиям прибыль. Быстро развилась мощная реклама новых лекарств, многие из которых предлагались не для лечения болезней, а для их предупреждения. Появилось множество лекарств для постоянного применения. К началу XXI века номенклатура синтетических лекарств исчислялась тысячами названий. Спектр их действия очень широк. Плохим ученикам в школе назначают таблетки для улучшения памяти и внимания, студентам на периоды экзаменов — стимуляторы мозговой деятельности, очень активным детям прописывают транквилизаторы. Знаменитый аспирин предлагалось принимать всем каждый день в качестве профилактики от инсультов. (Затем от этого отказались, так как аспирин повреждает слизистые оболочки желудка.) Широкий спектр синтетических антибиотиков и гормонов начали использовать в животноводстве, птицеводстве и даже в рыбоводстве, также для профилактики заболеваний. Особенно популярными стали усилители эректильной функции типа виагры.

В 2007 году в странах ЕС и в США финансовый оборот фармацевтических компаний превысил оборот продовольственных корпораций. Общий финансовый оборот основных двадцати западных фармацевтических компаний в 2008 году приблизился к триллиону долларов, и экономический кризис не повлиял на их прибыли.

Однако лекарства, независимо от того, назначены они врачом или куплены в аптеке без рецепта, нередко оказывают побочные действия: вызывают аллергию, нарушение обмена веществ, гормональные сдвиги. Они влияют на все органы и системы организма.

ЯДЫ В ПРОДУКТАХ

В последние 20 лет в связи с развитием супермаркетов уменьшилась доля свежих натуральных, особенно местных, продуктов питания по отношению к промышленно переработанным, которые можно хранить на полках магазинов значительно дольше. Во множестве продаваемых населению продуктов содержатся консерванты, подсластители, ароматизаторы, регуляторы кислотности, эмульсификаторы, ингибиторы пенообразования, глазирующие и стабилизирующие соединения, красители, антиоксиданты, антисептики и многочисленные минеральные добавки. Химически многие из них имеют сложные формулы. Поскольку существующие законы обязывают производителей указывать на упаковках полный состав компонентов, то некоторые названия добавок могли бы смутить потребителей. Чтобы сложные химические названия не отпугивали покупателей, было разрешено вводить для них шифрованные кодовые обозначения. Действительно, кто стал бы, например, покупать продукт ежедневного питания, на упаковке которого написано, что он содержит пропил-4-гидроксибензонат или бутилированный гидрокситолуол? Между тем первый из них, получаемый синтетически из бензойной кислоты и являющийся антисептиком, регулярно добавляется не только в пиво, но и в разнообразные соусы и фруктовые напитки, увеличивая возможные сроки их хранения на полках магазинов. Второй как антиоксидант добавляют в чипсы и крипсы, в маргарин и другие жиры. Пропил-4-гидроксибензонат обозначается на упаковках как Е216, а бутилированный гидрокситолуол как Е321. Буква Е взята от слова evaluated, то есть «проверенный». Но проверяли их давно. E321 получают из продуктов переработки нефти, и в настоящее время он считается канцерогеном. Несколько канцерогенов идентифицировано среди красителей. Ещё к 1990 году были одобрены для применения в пищевой промышленности более 1000 соединений, в основном синтетических. Избежать всех этих добавок в повседневном питании практически невозможно. Потребители с этим смирились. В конце концов, вредные для здоровья соединения образуются и при копчении рыбы, и при жарке шашлыков, и при обжаривании кофейных бобов.

ЕСТЬ ЛИ ПРЕДЕЛ ПРИСПОСОБИТЕЛЬНЫМ ВОЗМОЖНОСТЯМ?

Млекопитающие имеют более совершенные физиологические и биохимические системы выведения из организма вредных веществ, чем все другие классы животных. Это объясняется тем, что млекопитающие возникли в ходе эволюции позднее других, лишь около 70 миллионов лет назад. Они питались за счёт других классов животных и растений, имея максимально разнообразную пищу. Печень у млекопитающих, главный орган детоксикации, устроена сложнее. Она обеспечена богатейшим ассортиментом разных ферментов, способных окислять и переводить в растворимое состояние различные вещества, которые были бы слишком токсичны для рептилий и даже для птиц. Более сложно устроены и почки млекопитающих, обеспечивая удаление растворимых продуктов с мочой, отдельно от продуктов, удаляемых через кишечник. Жирорастворимые токсины, которые нельзя удалить через почки, выходят через желчный пузырь вместе с желчью. У птиц и рептилий нет сформировавшегося мочевого пузыря и продукты выделения почек удаляются через клоаку. Возможность накопления мочи обеспечивает более высокую степень разведения алкалоидов растений, уменьшая их токсический эффект.

Приматы, возникшие в эволюции позднее других млекопитающих, отличаются особой устойчивостью к токсинам. Однако эти защитные приспособления возникали по отношению к природным токсинам. Они не могут дать людям устойчивость к синтетическим соединениям и промышленным загрязнителям внешней среды. Новая, недавно возникшая особая «человеческая экология» изучает множество физиологических патологий и аномалий, которые не имеют аналогий у приматов, живущих в естественной среде. В человеческих сообществах, особенно в экономически развитых странах, резко снижена рождаемость и практически отсутствует естественный отбор наиболее полноценных геномов, существующий в природных популяциях животных. Однако мутагенность и канцерогенность разных химических веществ коррелируют между собой только в соматических клетках. Появление раковых опухолей в различных тканях — чаще всего результат мутаций в отдельных клетках. В зародышевых клетках всех видов животных с половым размножением мутации происходят значительно реже. В этих клетках существуют дополнительные возможности восстановить множество повреждений генома с помощью более широкого ассортимента ферментов репарации ДНК, чем тот, который имеется в соматических клетках. Отбор полноценных геномов для нового поколения осуществляется также путём рекомбинации участков гомологичных хромосом при делении клетки на четыре, происходящем при созревании мужских и женских гамет. В последние десять—пятнадцать лет идёт активная кампания против использования лабораторных животных для проверки токсичности и мутагенности различных химических веществ. Эти тесты теперь часто проводят лишь в культуре тканей. Результаты таких тестов могут использоваться для медицинских и физиологических целей. Однако они недостаточны для оценки генетических последствий тех изменений, которым мы подвергаемся. Поэтому пока и неясно, есть такие изменения или нет. А выяснить это очень важно.

Но что интересно: средняя продолжительность жизни растёт на земле линейно с 1840 года. Этому, конечно, способствовали и гигиена, и изменения условий труда, и те же самые лекарства, и борьба с детской смертностью. Но при этом увеличивается смертность от рака, поскольку в обществе растёт доля пожилых людей, а риск новообразований у них много выше. В то же время, по прогнозам, 50% младенцев, которые родятся сегодня, доживут до 100 лет.

Конечно, наш организм адаптируется. Ведь даже аллергия это своего рода адаптация — организм «как бы» не пускает аллергены внутрь себя.

В последнее время средства массовой информации часто пишут о потере генофонда наций. Да, изменения идут, они проявляются на уровне клеток, органов, систем (скажем, иммунитета). Но никто пока не знает меры адаптационных возможностей человеческого организма. Вместо бесконечных «страшилок» нужны серьёзные исследования.

. Кстати, озеро Апопка восстановилось благодаря бактериям, и сейчас это место отдыха.

Читайте также: