Андрогены. Регуляция секреции и физиологические эффекты половых стероидов коры надпочечников. Вирилизация.
Добавил пользователь Alex Обновлено: 14.12.2024
Андрогены (греч. aner, andros — мужчина и genesis — происхождение) — соединения, обладающие свойствами мужского полового гормона тестостерона (Т). Т (андрост-4-ен-17р-ол-3-он; мол, масса 288,41) является производным андростана. В 1935 г. Лакер из 100 кг семенников быков впервые выделил 10 мг чистого вещества, которое он назвал тестостероном. Его биологическая активность оказалась в 10 раз выше таковой известного к тому времени андростерона. На основании ряда исследований было высказано предположение, что Т является 17-дигидропроизводным андростендиона. Вскоре гипотетическая структура Т была расшифрована и осуществлен его синтез. Это явилось прологом для синтеза десятков производных Т с заданными свойствами. Позже из различных биологических сред человека и животных было выделено большое количество естественных андрогенов, секретируемых семенниками и надпочечниками, а также продуктов их метаболизма, экскретируемых с мочой. Биосинтез и метаболизм андрогенов. С помощью различных методов, в том числе химико-аналитических, радиоизотопных, хроматографических, перфузии семенников, исследуя продукты метаболизма, экскретируемые с мочой, удалось разработать принципиальную схему синтеза андрогенов. Аккумулируемый клетками Лейдига семенников эфир холестерина является источником образования андрогенов.
Ключевые слова
Для цитирования:
For citation:
Андрогены (греч. aner, andros — мужчина и genesis — происхождение) — соединения, обладающие свойствами мужского полового гормона тестостерона (Т). Т (андрост-4-ен-17р-ол-3- он; мол, масса 288,41) является производным андростана.
В 1935 г. Лакер из 100 кг семенников быков впервые выделил 10 мг чистого вещества, которое он назвал тестостероном. Его биологическая активность оказалась в 10 раз выше таковой известного к тому времени андростерона. На основании ряда исследований было высказано предположение, что Т является 17-дигидропроизводным андростендиона. Вскоре гипотетическая структура Т была расшифрована и осуществлен его синтез. Это явилось прологом для синтеза десятков производных Т с заданными свойствами. Позже из различных биологических сред человека и животных было выделено большое количество естественных андрогенов, секретируемых семенниками и надпочечниками, а также продуктов их метаболизма, экскретируемых с мочой.
Биосинтез и метаболизм андрогенов
С помощью различных методов, в том числе химико-аналитических, радиоизотопных, хроматографических, перфузии семенников, исследуя продукты метаболизма, экскретируемые с мочой, удалось разработать принципиальную схему синтеза андрогенов. Аккумулируемый клетками Лейдига семенников эфир холестерина является источником образования андрогенов.
Образование андрогенов в клетках Лейдига находится под регулирующим контролем лютеинизирующего гормона (ЛГ), а у развивающегося плода — хорионического гонадотропина. Функционально это единая система гипофиз — семенники, которая в свою очередь регулируется гипоталамическим гона- долиберином. В основе ее саморегуляции лежит принцип отрицательной и положительной обратной связи, впервые открытый русским ученым М. М. Завадовским. Через механизмы отрицательной обратной связи Т уменьшает импульсный выброс гонадотропинов. В этом процессе принимают участие также активные метаболиты Т дигидротестостерон и эстрадиол.
По современным представлениям, в системе регуляции имеется и механизм положительной обратной связи, где только эстрадиол, но не Т обеспечивает выброс ЛГ при определенных патофизиологических условиях, например при кастрации или гипогонадизме. Т обеспечивает ингибирующий эффект прежде всего на уровне гипоталамуса и в меньшей степени на гипофизарном уровне.
Кроме ЛГ, и другие факторы могут модулировать гормональный ответ клеток Лейдига. Например, гормон роста усиливает секрецию Т у мальчиков с дефицитом соматотропного гормона. Некоторые пептиды могут оказывать активирующее или ингибирующее влияние на секрецию Т. К ним относятся аргинин, вазопрессин, окситоцин, активин и p-эндорфин. Последний могут синтезировать семенники.
Образование андрогенов в основном по Д5-пути происходит также и в сетчатой зоне коры надпочечников. Их синтез частично контролируется адренокортикотропным гормоном гипофиза. В значительных количествах надпочечники вырабатывают дегидроэпиандростерон и в огромных количествах — его сульфатную форму. В незначительных количествах они образуют также Т, андростендион и lip-гидроксиандростенди- он. Последний могут синтезировать только надпочечники, так как фермент lip-гидроксилаза отсутствует в гонадах. В отличие от надпочечников семенники не секретируют сульфатную форму дегидроэпиандростерона. Дегидроэпиандростерон могут также синтезировать определенные структуры мозга животных и человека.
Метаболические превращения андрогенов происходят в основном в печени, а продукты их деградации выводятся главным образом с мочой в виде соединений серной или глюкуроновой кислоты. При этом Зр-оксистероиды при участии сульфокиназы конъюгируются только с серной кислотой, а Зр-ок-
17-Гидроксипро- 77-Гидроксипрогестерон гестерон
Дегидрозпиандро- Андростендион стерон
Рис. 1. Основные пути биосинтеза андрогенов в семенниках людей.
Тестостерон 5с£-андростанол- 17J3-OH-3
5/з - андростандион - 3,17
5сС- андростандион - 3,77
но ' н Андростерон
Рис. 2. Метаболизм
систероиды связаны преимущественно с глюкуроновой кислотой. Конъюгация обеспечивается глюкурозилтрансферазой. На рис. 2 показаны основные пути метаболизма андрогенов. Его направленность детерминирована реакцией восстановления в кольце А и восстановления кетогруппы в 17-м положении. Ниже горизонтальной линии представлены основные метаболиты андрогенов. Их соотношение имеет существенные видовые, а у некоторых животных и половые различия. У человека оно зависит от функционального состояния печени, щитовидной железы и других факторов.
Кортикостероиды — кортизол и кортизон — также превращаются в андрогены и выводятся с мочой К ним относятся 1 ip-оксиандростерон, 1 ip-оксиандростендион, 11-кетоандро- стерон, 11-окситестанолон, 11-кетотестанолон и адреностерон. Метаболиты Т имеют значительно меньшую андрогенную активность или лишены ее. Некоторые из них приобретают новые биологические свойства. Например, этиохоланолон оказывает пирогенное действие. В тканях-мишенях Т метаболизируется также в активные метаболиты — дигидротестостерон (ДГТ) и эстрадиол. Метаболиты с кетогруппой при 17-м атоме углерода объединяются понятием 17-кетостероиды (17-КС). Только 30% экскретируемых с мочой 17-КС являются продуктом превращения андрогенов семенников, остальные 70% имеют надпочечниковое происхождение. Определение 17-КС долгое время использовалось для оценки функции надпочечников и половых желез.
Секреция андрогенов
Метаболическая инактивация андрогенов и их экскреция компенсируются постоянной продукцией стероидов. Процессы синтеза и секреции Т протекают практически одновременно. В таблице представлен диапазон колебаний концентрации (в нмоль/л) андрогенов и их предшественников в периферической крови и в крови, оттекающей от семенника человека. В
Концентрация (в нмоль/л) стероидов в крови
наибольшем количестве семенники секретируют Т, затем андростендион, дегидроэпиандростерон и ДГТ. Доминирующим предшественником является 17а-гидроксипрогестерон.
В эксперименте на самцах обезьян с одномоментной селективной катетеризацией надпочечниковой и семенниковой вен определены количественные параметры продукции андрогенов. Семенники вырабатывают (из расчета нмоль/сут) Т — 70—90, андростендион — 17—35, ДГТ — 8—20. Надпочечники секретируют Т в 10 раз меньше, ДГТ — в сопоставимых количествах, андростендион в 10 раз больше, а продукция дегидроэпиандростерона достигает 12 мкмоль железой за сутки.
Основная часть Т (более 98%), поступающего в кровь общей циркуляции, связывается со специфическим транспортным белком — тестостерон-эстрадиолсвязывающим глобулином. Его синтез происходит в печени. На процесс связывания влияют эстрогены. Т связывается также и альбумином, хотя этот комплекс менее прочный, но он проникает через гематоэнцефалический барьер, тогда как комплекс с глобулином не проникает в мозг. Биологическое действие осуществляет свободный Т. Другой связывающий белок, называемый андро- генсвязывающим глобулином, содержится в жидкости семенных канальцев. Он обеспечивает высокую концентрацию Т внутри семенника, которая требуется для обеспечения процесса сперматогенеза. Этот белок отличается от глобулина крови как иммунологически, так и степенью сродства к Т и ДГТ.
Уровень плазменного Т существенно снижается с возрастом только в случае сопутствующих заболеваний, однако уровень свободного Т у пожилых мужчин уменьшается. С возрастом содержание в крови ДГТ немного уменьшается, но его образование в ткани предстательной железы нарастает. Это является основной причиной развития гиперплазии и аденомы предстательной железы. У пожилых мужчин снижается чувствительность андрогеновых рецепторов тканей-мишеней к Т и ДГТ, исчезает суточный ритм М. Продукция надпочечникового андрогена — дегидроэпиандростерона прогрессивно снижается после 30 лет. Стресс, курение, неблагоприятные факторы внешней среды ингибируют продукцию Т.
Биологическое действие андрогенов
Андрогены обеспечивают прежде всего регуляцию развития, роста и функцию органов и тканей репродуктивной системы. Биологическое влияние андрогенов на ткани-мишени реализуется через специфические рецепторы и во многом определяется конфигурацией молекулы стероида. Последовательность происходящих реакций под действием Т выглядит следующим образом:
- проникновение свободного Т в клетку;
- образование комплекса Т + рецептор;
- трансформация комплекса в форму, способную связываться ядерным акцептором;
- связывание с хроматиновым акцептором;
- избирательная инициация транскрипции специфических мРНК и координированный синтез транспортных и рибосомных РНК;
- процессинг первичных РНК-транскриптов;
- транспорт определенных мРНК в цитоплазму;
- трансляция поступающих мРНК и обеспечение повышенного синтеза белка;
- посттрансляционные модификации белков.
В настоящее время клонирован ген андрогенового рецептора, который всесторонне охарактеризован.
Биологические эффекты андрогенов зависят от возраста. В эмбриональный период Т обеспечивает формирование и развитие семенных пузырьков, придатка семенников и семя- выводящего протока. Процесс роста и развития предстательной железы, полового члена, мошонки и наружной уретры контролирует ДГТ, который является метаболитом Т. Он образуется непосредственно в тканях-мишенях с участием фермента 5а-редуктазы. В настоящее время доказано наличие у млекопитающих изоформ (1-й и 2-й тип) данного фермента, кодируемых разными генами. Изоформы имеют различные биохимические и фармакологические свойства, а также различное распределение в тканях. В урогенитальном тракте 2-й тип фермента содержится в мезенхимальных и стромальных клетках, которые обеспечивают формирование и последующий рост репродуктивных органов, таких как предстательная железа. Физиологическая роль изоформы 1-го типа пока неясна. Она обнаружена в коже и печени человека. Во время пуберта- ции андрогены обеспечивают развитие вторичных половых признаков, голосового аппарата, стимулируют рост (за счет повышения секреции гормона роста я усиления продукции инсулиноподобного ростового фактора I).
Андрогены необходимы для нормальной половой функции. Т инициирует и поддерживает процесс сперматогенеза, либидо и спонтанные эрекции. Он не влияет на эрекции, обусловленные визуальными стимулами. Кроме этого, для взрослого организма андрогены необходимы для поддержания вторичных половых признаков, кроветворения, мышечной и костной ткани. Они оказывают генерализованное анаболическое действие на белковый обмен (задержка азота, увеличение массы тела, суммарной массы поперечнополосатой мускулатуры и нарастание ее силы). В печени андрогены влияют на синтез различных сывороточных белков, стимулируют выработку почками эритропоэтина. Андрогены оказывают прямое действие на стволовые клетки системы кроветворения. Они стимулируют формирование кости, ее плотность, обеспечивают созревание остеобластов и хондроцитов.
Андрогены участвуют в дифференцировке мозга. В их отсутствие его развитие идет по женскому типу. Они влияют на те участки мозга, которые контролируют циклическую регуляцию секреции гонадолиберина гипоталамусом и половое поведение. Т в этом случае действует опосредованно, через ДГТ и эстрадиол, которые образуются из него с участием 5а-редукта- зы и ароматазы в специфических нейронах гипоталамуса. ДГТ, вводимый экзогенно, не воспроизводит эффектов Т, так как его молекула не подвергается ароматизации. Мозг эмбрионов обоего пола защищен от высокого уровня эстрогенов в крови матери а-фетопротеином, обладающим огромной емкостью для связывания эстрогенов.
У низших животных существует прямая корреляция между уровнем Т и агрессивным поведением. У человека такая связь не доказана.
Недостаточная продукция андрогенов приводит к развитию различных форм гипогонадизма, а избыточная — разных типов гиперандрогении.
Методы определения андрогенов
Для определения содержания андрогенов используют биохимические, химические и радиоиммунологические методы. В течение длительного времени единственно возможным подходом к оценке уровня андрогенов был биологический метод. Их биологическую активность определяли по росту гребня молодых петушков и кастрированных петухов, по массе предстательной железы и семенных пузырьков у неполовозрелых или кастрированных крыс и мышей, С домешаю этого метода тестируют андрогенную активность вновь синтезированных андрогенов, сравнивая ее с активностью Т.
Решающую роль в понимании синтеза и метаболизма андрогенов сыграли химические методы, включая все варианты хроматографии (бумажная, колоночная, тонкослойная, газожидкостная с масс-спектрометрией и высокоэффективная жидкостная хроматография). Они до сих пор остаются важными приемами для изучения метаболизма андрогенов. Метод определения 17-КС сыграл большую роль в диагностике гормональных нарушений надпочечников и семенников.
В последнее время широкое распространение получили радиоиммунологические методы определения уровня андрогенов с использованием высокоспецифических поликлональных и моноклональных антител. Они оказали определяющее влияние на развитие как экспериментальной, так и клинической эндокринологии. Их роль в развитии современной медицины ученые сравнивают с появлением телескопа в XVII веке. Чувствительность метода обеспечивает определение андрогенов в биологических средах в пикограммовых количествах. Для надежного определения Т и ДГТ требуется их предварительное хроматографическое разделение; для определения сульфатных форм андрогенов, например дегидроэпиандростерона, созданы прямые методы иммуноанализа без предварительного сольволиза. В последнее десятилетие созданы альтернативные неизотопные иммунологические методы определения гормонов. Наиболее широкое распространение получили иммуноферментные методы, люминесцентные, методы специфической флюоресценции и усиленной люминесценции. В качестве меченого компонента используются пероксидаза хрена, щелочная фосфатаза, европий, люминол, изолюминол или акридин, комбинация пероксидазы хрена с люминолом. К достоинствам этих методов относятся их высокая производительность и возможность длительного использования. Отпадают все требования и неудобства, связанные с использованием изотопных методов.
Аналоги тестостерона
Т очень быстро инактивируется в печени и поэтому имеет ограниченное значение для перорального применения в качестве заместительной терапии при различных формах гипогонадизма. С этой целью были синтезированы аналоги Т с более длительным биологическим действием. Практически все они являются эфирами Т. К ним относятся тестостерона пропионат, тестостерона энантат, который оказывает более медленное, но более продолжительное действие. При парентеральном введении он обеспечивает гормональный эффект в течение 2— 3 нед. В последнее время синтезирован новый эфир Т — тестостерона буциклат. 1 инъекция масляного раствора стероида поддерживает уровень Т в крови в пределах нормальных колебаний в течение 3 мес. Ведутся работы по использованию пролонгированных андрогенов в комбинации с прогестинами для подавления фертильности, которая достигается ингибированием сперматогенеза при сохранении либидо. Из пероральных производных Т используют метилтестостерон, однако по активности он уступает эфирам Т. Назначают препараты при половом недоразвитии, мужском климактерическом состоянии и связанных с ним сердечно-сосудистых и нервных расстройствах. Следует помнить о гепатотоксическом действии ряда производных Т.
Антиандрогены
Естественным антагонистом андрогенов является прогестерон. Некоторые его производные имеют еще более выраженное влияние. Антиандрогены, конкурируя за связь с андроге- новыми рецепторами, противодействуют эффектам Т и ДГТ в тканях-мишенях. Наиболее активным антиандрогеном является ципротеронацетат. Он применяется для лечения гирсутизма, некоторых маскулинизирующих синдромов, а также для лечения аденомы и рака предстательной железы. К более слабым антиандрогенам относятся спиронолактон и препарат нестероидной природы флутамид. В последнее время синтезирован и получил распространение в клинике новый антиандроген, специфический блокатор 5а-редуктазы финастерид, или проскар. Препарат, являясь производным стероидов андростанового ряда, избирательно блокирует 5а-редуктазную активность и тем самым снижает образование ДГТ из Т. Он практически не связывается андрогеновыми рецепторами. Успешно применяется для лечения гиперплазии предстательной железы.
Анаболические стероиды
Т оказывает выраженное анаболическое действие и является самым мощным естественным анаболическим гормоном. Поэтому снижение его продукции, обусловленное гипогонадизмом, кастрацией, сопровождается нарушением белкового обмена, атрофией скелетной мускулатуры, ожирением, развитием остеопороза. Однако применению Т как анаболика препятствует его сильное андрогенное действие. В последние годы получены производные Т с усиленными анаболическими свойствами и маловыраженной андрогенной активностью. Они получили название анаболических стероидов. К ним относятся метандростенолон (синонимы: дианабел, неробол), феноболин (синонимы: нероболил, туринабол), ретаболил (синоним: туринабол-депо), силаболин, метиландростендиол (синоним: метандриол).
Основным показанием к применению анаболических стероидов является нарушение белкового обмена (кахексия различного генеза, тяжелые травмы, ожоги, инфекционные и другие заболевания, сопровождающиеся потерей белка). Их применяют при остеопорозе, обширных пластических операциях на костях, при миопатиях и прогрессирующей мышечной дистрофии, при хронических заболеваниях почек и легких. Анаболические стероиды назначают при задержке роста, хронической недостаточности надпочечников, диабетических ангиопатиях, адипозогенитальной дистрофии, гипофизарной карликовости и др. Анаболические стероиды увеличивают фибринолиз и уровень антитромбина III. Положительное влияние анаболических стероидов на спортивные результаты научно не доказано.
Научная электронная библиотека
Половые железы выполняют инкреторную (стрероидогенез) и экскреторную (сперматогенез) функции. Для гонадотропинов характерен синергизм при регуляции биосинтеза половых стероидов. ФСГ увеличивает число рецепторов к ЛГ на плазматической мембране клеток Лейдига и чувствительность последних к стимулирующему действию ЛГ. Действие ЛГ непрямое, а опосредовано влиянием на сперматогенез тестостерона. Тестостерон, проникая в половые клетки, стимулирует развитие сперматоцитов в сперматиды, которые затем превращаются в сперматозоиды. Центральная регуляция сперматогенеза осуществляется в основном с помощью ФСГ, который действует на сперматогонии и на сперматоциты, способствуя их дифференцировке и созреванию. Установлено, что в течение каждой минуты в организме мужчины вырабатывается 50 000 сперматозоидов. В течение каждого часа его яички вырабатывают 3 000 000 сперматозоидов. В течение каждого дня 72 000 000 сперматозоидов. Созревание половых клеток у взрослого занимает около 72 дней в яичках и 12 дней в придатках, чтобы достигнуть уровня зрелости, то есть в общей сложности почти 3 месяца.
Клетки Сертоли составляют 10-15 % клеточных элементов канальцев. Помимо фагоцитарной активности и регуляции сперматогенеза они вырабатывают ингибин, регулирующий выработку ФСГ, а в эмбриональной жизни - фактор, ингибирующий развитие мюллеровых каналов.
Клетки Сертоли продуцируют андрогенсвязывающие белки (АСБ), которые секретируются в полость семенных канальцев. Синтез АСБ находится под контролем ФСГ. Синтез и секреция АСБ стимулируются также тестостероном. Таким образом, клетки Сертоли реагируют продукцией одного и того же белка (андроген-связывающего) как на ФСГ, так и на тестостерон. Одновременное воздействие обоих гормонов приводит к продукций большого количества андроген-связывающего белка, чем действие каждого из них в отдельности. Эти белки ответственны за транспорт андрогенов внутри канальцев и поддержание оптимальной их концентрации, необходимой для обеспечения метаболических процессов в половых клетках. Позднее открыты кислотный эпидидемальный гликопротеид (КЭГ) и иростатеин (ПТ). Предполагается, что КЭГ способствует созреванию сперматозоидов в придатке. ПТ вырабатывается в вентральной доле предстательной железы. Он присутствует в семенной жидкости и покрывает мембрану сперматозоидов. ПТ способен обеспечивать высокие уровни андрогенов вблизи эпителиальных клеток простаты. Высокая; внутргонадная концентрация тестостерона необходима для успешного осуществления сперматогенеза, хотя в придатке яичка основным метаболитом, оказывающим влияние на сперматогенез, является дигидротестостерон (ДГТ).
Для проявления сперматогенного эффекта ФСГ в организме должны быть андрогены, в частности, тестостерон. Действие андрогенов на сперматогенез своеобразно и во многом сопряжено с механизмом обратной связи системы гипоталамус - гипофиз - семенники. В эксперименте небольшие дозы тестостерона вызывают активацию сперматогенеза в течение 30-45 дней, после чего наступает его угнетение на фоне атрофии интестициальной ткани. Большие дозы тестостерона угнетают сперматогенез и гормональную функцию яичек. В первую очередь подавляется функция клеток Лейдига. Угнетение сперматогенеза происходит на стадии сперматоцитов с понижением числа митозов и прогрессированием дегенеративных процессов в семенных канальцах. ЯГ регулирует секрецию тестостерона. В организме мужчин основной его мишенью являются интерстициальные клетки Лейдига. ЛГ называют также гормоном, стимулирующим интерстициальные клетки (ГСИК). ФСГ дает морфогенетический эффект, а именно пролиферацию клеток Сертоли и сперматогенного эпителия, что необходимо для последующей активации сперматогенеза. Для проявления эффекта ФСГ необходимо присутствие небольшого количества ЛГ и тестостерона в яичках. Наряду с гонадотропинами важное значение имеет действие на половую систему другого гормона аденогипофиза - пролактина (ПЛ). Он значительно усиливает действие ЛГ на стероидогенез в клетках Лейдига, контролирует уровень предшественников тестостерона, влияя тем самым на его продукцию. Пролактин оказывает модулирующее воздействие на механизмы отрицательного обратного влияния тестостерона на тестикулярном и центральном уровнях. ПЛ также увеличиваег количество рецепторов андрогенов в тканях предстательной железы и семенных пузырьков, тем самым стимулирует их рост за счет усиления действия стероидных гормонов в этом направлении. С другой стороны, между секрецией ПЛ и уровнем гонадотропных гормонов существуют реципрокные отношения - повышение уровня ПЛ сопровождается снижением секреции ЛГ, что отражается и на продукции половых гормонов. Дефицит или избыток ПЛ часто сопровождается снижением репродуктивной функции.
Кроме центральной, существует и местная (внутритестикулярная) регуляция сперматогенеза, осуществляющаяся за счет факторов, вырабатываемых в основном клетками Сертоли. Они синтезируют эсградиол, ингибирующий секрецию клетками Лейдига тестостерона. В семенниках эстрогены из клеток Сертоли регулируют биосинтез тестостерона клетками Лейдига. В клетках Сертоли семенниками вырабатывается тестикулярный гонадолиберин, который оказывает паракринное действие на клетки Лейдига в семеннике, активируя их к продукции и секреции тест остерона.
Учитывая, что введение тестостерона не влияет на секрецию ФСГ, а для подавления ее необходимы дозы эстрогенов выше физиологических, исследователи пришли к заключению о непричастности этих гормонов к регуляции ФСГ. Данную функцию выполняет инГибин. Образование ингибина клетками Сертоли стимулируется андрогенами. Поддержание количественно нормальной секреции ингибина требует совместного действия обоих гонадотропинов. Обнаружение ингибина в изолированных клетках гипофиза привело к выводу, что он оказывает прямое действие на гипофиз, в частности, угнетает секрецию ФСГ. В норме существует отрицательная обратная связь между ФСГ и ингибином, секретируемым клетками Сертоли в ответ на ФСГ. При воздействии тестостерона снижается уровень ингибина и подавляется процесс сперматогенеза. Около 30 % секретируемого ингибина не зависит от гонадотропинов. Циркулирующий в сыворотке крови ингибин В служит маркером функционирования клеток Сертоли. Важная физиологическая роль ингибина заключается в контроле секреции ФСГ по принципу обратной связи! Клетки Сертоли выполняют еще ряд важных функций, к которым относится: синтез фактора роста семенных канальцев, способность фагоцитировать остатки продуктов сперматогенеза, формирование и поддержание целостности гемато-тестикулярного барьера. Полагают* что инсулиноподобный фактор роста-1 принимает участие в регуляции дйфференцировки сперматогоний и сперматоцитов, клеток Лейдига и самих клеток Сертоли. Клетки Сертоли секретируют также ряд других белков - трансферрин, церулоплазмин, соматомедин-подобное вещество, активатор плазминогена и др. Регуляция функций семенников осуществляется также паракринным путем. Клетки Сертоли регулируют размножение и созревание зародышевых клеток, которые. в свою очередь, циклически регулируют функцию клеток Сертоли, а через них и клеток Лейдига. Секреция тестикулярных андрогенов регулируется ЛГ и ФСГ.
Среди половых гормонов ключевая роль в регуляции мужской половой функции принадлежит андрогенам. В свою очередь, из андрогенов наиболее активен тестостерон. Другие мужские половые гормоны - андростендион, андростерон в 6-10 раз менее активны а дегидроэпиандростерон и эпитетостерон - в 25-50 раз.
Физиологическое действие андрогенов выражено в двух критических периодах - эмбриональном и пубертатном. Именно в этих периодах отчетливо выявляется их морфогенетическое и активационное воздействие. Морфогенетическое воздействие андрогенов начинается еще в эмбриональном периоде: семенники зародыша мужского пола очень рано (к 12-й неделе) продуцируют андрогены, которые и определяют развитие плода цо мужскому типу. С окончанием эмбрионального формирования как внутренних, так и наружных гениталий (к 32-й неделе) морфообразующая роль половых стероидов редуцируется и остается на таком уровнё до пубертатного периода.
Источником образования стероидных гормонов является холестерин. В результате окисления данного соединения образуются женские и мужские половые гормоны. Предшественником андрогенов является женский половой гормон - прогестерон, а образование эстрогенов в организме происходит в основном из андрогенов. Таким образом, биосинтез половых стероидов, как мужских (андрогенов), так и женских (прогестинов и эстрогенов), является единым взаимосвязанным процессом. У мужчин преобладают андрогены, а у женщин прогестерон и эстрогены.
Регуляция секреции андрогенов в организме связана с двумя системами: гипофиз - половые железы и гипофиз - кора надпочечников, поскольку источниками секреции андрогенов являются половые железы и кора надпочечников. Исследованиями М.В. Корякина и соавт. (1998) показано, что вышеуказанные системы не имеют единого механизма регуляции.
В организме существует многокомпонентная система белков - переносчиков стероидных гормонов к органам-мишеням. В свободной, несвязанной с какими-либо носителями форме, в крови циркулируют лишь 2-3 % от общего количества стероидов, и, согласно довольно распространенному мнению, именно они определяют биологические эффекты гормонов. Основную роль в комплексировании гормонов выполняет тестостерон-эстрадиолсвязывающий глобулин (ТЭСГ). Он с высоким сродством связывает дигидротестостерон и тестостерон и с более низким - эстрадиол. Синтез осуществляется в печени и регулируется эстрогенами (индукторы) и андрогенами (супрессоры). В этой связи ТЭСГ играет первостепенную роль в регуляции уровня половых гормонов, особенно их свободных фракций. В отношении половых гормонов этот белок выполняет транспортную, регулирующую и защитную от деградации и выведения из организма функции. Некоторое количество андрогенов взаимодействует с сывороточным альбумином, который преимущественно участвует только в транспорте гормонов, ввиду низкого сродства.
Характерной особенностью большинства органов-мишеней андрогенов является способность осуществлять превращение тестостерона в более активное производное - 5а-дигидротестостерон (5а-ДГТ). Превращение тестостерона в дигидротестостерон обеспечивается 5а-редуктазой, активность которой особенно велика в простате и эпидермисе и практически отсутствует в семенниках и мышечной ткани у млекопитающих. Активность 5а-редуктазы в строме предстательной железы выше на 150 %, чем з эпителии (К. Voigt и W. Bartsch, 1985). Экспериментальные и клинические данные свидетельствуют о наличии стимулирующего влияния тестикулярных андрогенов на морфологическое развитие и функцию предстательной железы. Внутри клеток предстательной железы андрогенные эффекты тестостерона опосредуются его метаболитом - 5а-ДГТ, который связывается со специфическим рецептором на эпителиальных железистых клетках предстательной железы. Предполагается, что образование дигидротестостерона в простате является одним из важных механизмов, регулирующих ее рост. Получены данные о значении эстрадиола для нормальной функции железы, в частности, обнаружены рецепторы этого гормона в простате.
Не всегда 5а-ДГТ принимает участие в формировании андрогенного ответа. Многие виды биологического ответа могут быть вызваны только самим тестостероном и его метаболитами, кроме 5а-ДГТ (У. Мейнуо-ринг, 1979). В отличие от ядер клеток добавочных половых желез, преобладающим рецептируемым андрогеном является 5а-дигидротестостерон (5а-ДГТ), ядра других андрогенчувствительных тканей связывают в равной мере тестостерон и его 5а-воссгановленный метаболит (гипоталамус, гипофиз, семенник) или только тестостерон (почки, мышечная, костная и другие ткани). J. Minguell и W. Sieralta (1975) выделили три основных типа тканей’: с высокий уровнем 5 редуктазной активности, при которой более 50 % тестостерона превращается в 5а-дигидротсстостерон (добавочные половые железы и йркцатки семенников), со средним уровнем - 5-50 % тестостерона метабозируётся в 5а-ДГТ (мозг, аденогипофиз, почки, кожа . Гидротестостерон и 3а-диол (после обратного превращения в 5 а-дигид- ротестостерон) регулируют деление клеток и поддерживают их величину, в то время как эстрадиол обеспечивает регуляцию функциональной активности клеток, то есть управляет процессами секреции. Второй путь метаболизма тестостерона сводится к его ароматизации с образованием эстрадиола. Это весьма важная реакция для клеток ЦНС, принимающих участие в гормональной регуляции полового поведения, и их дифференцировки (Дж. Теппермен и X. Теппермен, 1989). У мужчин небольшое количество эстрадиола секретируется клетками Сертоли, но 87 % образуется за счет периферической ароматизации андрогенов, происходящей преимущественно в жировой ткани. Угнетение ароматизации стимулирует секрецию лютеинизируюицего гормона и тестостерона. Отмечается, что ароматизация андрогенов в эстрогены играет важную роль в регуляции секреции ЛГ по принципу отрицательной обратной связи и поддержании нормального уровня тестостерона у взрослых самцов приматов. Уровень эстрогенов у мужчин составляет от 2 до 30 %, а уровень прогестерона - от 6 до 100 % от уровня у женщин (в зависимости от стадии менструального цикла). По третьему пути тестостерон модифицируется 5p-редуктазой, превращающей его в 5Р-ДГТ и другие 5 [3-редуцированные стероиды], такие как этихолонолон. Последние не обладают андрогенным действием на мужскую репродуктивную систему, но стимулируют образование эритроцитов в красном костном мозге. Так же андрогены метаболизируются в основном в печени в относительно неактивные сульфаты и глюкурониды стероидов. Физиологическое значение функционального метаболизма тестостерона заключается в усилении или качественной модификации гормонального сигнала.
Андрогены (лекция)
Читайте также: