Механизм образования актиновых пучков сшивающими белками
Добавил пользователь Алексей Ф. Обновлено: 14.12.2024
Наименее конденсированы молекулы ДНК в интерфазных хромосомах и именно в этот период наиболее активно протекают процессы транскрипции, осуществляемые с помощью фермента РНК- полимеразы. В отличие от ДНК пространственная структура РНК однонитчатая. Химически РНК отличатся от ДНК не только присутствием рибозы, но и азотистого основания урацила (вместо тимина). Первичная молекула РНК, синтезированная с любого гена носит название первичного транскрипта. Первичный транскрипт представляет собой точную копию гена, также содержащую, как экзоны, так и интроны. Превращение первичного транскрипта в информационную (матричную) РНК происходит в клеточном ядре и называется процессингом. В ходе процессинга удаляются некодирующие последовательности, а кодирующие соединяются, сращиваются между собой, т.е. сплайсируются (to splice -сращивать) в единую молекулу. Во многих случаях возможны альтернативные варианты компоновки кодирующих участков - альтернативный сплайсинг. Очень важно, что один и тот же первичный транскрипт в результате сплайсинга может образовывать множество различных матричных РНК, и, следовательно, один ген может кодировать несколько белков. Показано, что в процессе дифференцировки клеток происходит изменение схемы сплайсинга многих транскриптов РНК, и таким образом один и тот же ген на разных стадиях развития клетки детерминирует синтез различных белков. Обычно в ядре эукариот можно наблюдать ядрышко - плотное тельце, состоящее из нуклеопротеидов - предшественников рибосом. Ядрышко формируется на определенных участках хромосом, т.н. ядрышковых организаторах, где находятся серии генов, кодирующих рибосомную РНК. Прерибосомная РНК мигрирует в цитоплазму, где происходит сборка рибосом. При митозе ядрышко распадается.
Все клетки представляют собой ячейки, заполненные жидким содержимым и ограниченные мембраной подобной стенке мыльного пузыря. Что же обуславливает жесткость клеток, способствует поддержанию их формы и обеспечивает возможность совершать направленные и координированные движения? Эту функцию выполняет цитоскелет - сложная сеть белковых нитей, пронизывающих всю цитоплазму. Однако, цитоскелет это не неподвижный каркас или скелет как можно думать исходя из названия, это одновременно и цитомускулатура - гибкая и сложная система, состоящая из структурных элементов, способных передвигаться друг относительно друга и только некоторые из них являются истинными фиксаторами. Более того, элементы цитоскелета обладают удивительной способностью быстро распадаться на крошечные строительные блоки и вновь собираться в структуры различной формы, что позволяет осуществлять направленные и координированные передвижения как клетки в целом, так и отдельных внутриклеточных органелл. Цитоскелет формируется из микротрубочек и двух типов микрофибрилл: актиновых филаментов и промежуточных филаментов.
В эукариотических клетках белок актин содержится в больших количествах (до 5% и более от общего белка клетки) и представляет собой полипептидные цепочки состоящие из 375 аминокислот (вес 42 000), свернутые в глобулярную (шарообразную) структуру или глобулу. Примерно половина всех молекул актина находится в виде индивидуальных субъединиц, называемых G-актином. Другая половина молекул актина соединена последовательно друг с другом, посредством специальных участков (сайтов) связывания, образуя длинные актиновые филаменты (английское filamentous - нитевидный) или волокна, называемые F-актином. Полимеризация актина не требует энергии (однако идет только в присутствии АТФ) и может быть вызвана в экспериментальных условиях повышением концентрации соли до уровня, близкого к физиологическому; при этом раствор актина, лишь не намного более вязкий, чем вода, быстро "густеет" по мере образования филаментов. Актиновые филаменты представляют собой плотную двойную спираль толщиной 6-8 нм (длина шага около 73 нм).
Располагаясь в виде пучков волокон соединенных поперечными сшивками непосредственно под плазматической мембраной актиновые филаменты образуют однородную трехмерную сеть. Эта сеть или клеточный кортекс, придает механическую прочность поверхностному слою клетки. Наиболее распространенным сшивающим элементом клеточного кортекса является длинная, димерная молекула белка филамина. В клетках содержание этого белка может составлять до 1% от всего клеточного белка (один димер филамина примерно на молекул 50 G-актина. На обоих концах молекулы филамина имеются участки связывания, с помощью которых филамин соединяется с актиновыми филаментами, фиксируя их друг относительно друга. Плазматическая мембрана настолько плотно связана с актиновым кортексом, что обе структуры могут рассматриваться как единый комплекс. Соединение кортекса и плазмалеммы обеспечивается специальными белками, которые расположены как в мембране, так и в непосредственной плизости от нее. Впервые такие белки - спектрин и анкирин были выявлены в эритроцитах.
Структура кортекса может быть различной у разных клеток и даже в разных участках одной и той же клетки. Иногда это плотная трехмерная сеть, в которую не могут проникать органеллы и другие крупные частицы. В других случаях кортекс заметно тоньше и больше похож на двухмерную структуру. Плотная трехмерная сеть актиновых филаментов под некоторыми участками плазматической мембраны может быстро распадаться при действии специальной внутриклеточной системы, которая не только устраняет поперечные сшивки между актиновыми филаментами, но и частично их деполимеризует. В частности, локальная деградация кортекса наблюдается, когда фагоцитирующий лейкоцит вступает в контакт с микроорганизмом. Это позволяет поверхностному слою цитоплазмы окружить и поглотить микробную клетку. На поверхности многих животных клеток небольшие пучки из 20-30 параллельных актиновых филаментов отходят под прямым углом от наружной стороны кортекса и заполняют продолговатые (длина около 1 мкм) и тонкие (ширина около 0,08 мкм) выпячивания клеточной поверхности, называемые микроворсинки. Особенно много микроворсинок на поверхности эпителиальных клеток, выстилающих внутреннюю поверхность тонкого кишечника. Важнейшей функцией этих клеток является всасывание. Благодаря микроворсинкам, количество которых на этих клетках достигает нескольких тысяч, значительно (в 20 раз) увеличивается всасывающая поверхность клетки.
Кроме актина в кортексе присутствует другой основной белок - миозин. Волокна миозина имеют боковые выросты - ножки, обладающие АТФ-азной активностью, благодаря колебательным движениям которых одни актиновые филаменты способны подтягиваться и передвигаться относительно других (подобно тому, как это происходит при мышечном сокращении) и благодаря этому клетка способна двигаться и изменять свою форму. Актиновые филаменты и миозин формируют при делении клетки сократимое кольцо, которое, сокращаясь, тянет за собой плазматическую мембрану разделяя клетку на две части. Принципиально другой механизм движения клеток связан со способностью актиновых волокон непрерывно удлинятся на своем так называемом плюс-конце (за счет постоянно идущей полимеризации). При этом на минус-конце идет постоянная деполимеризация филамента. Хотя общая его длина при этом не меняется, актиновая нить перемещается в направлении минус-плюс, подталкивая плазматическую мембрану, что приводит к образованию выростов на мембране и даже перемещению всей клетки. В отличие от простой сборки актиновых волокон из субъедениц в растворе, этот процесс, получивший название тредмиллинг, требует энергии гидролиза АТФ. В следствие тредмиллинга на поверхности клеток постоянно возникают динамичные выступы - микрошипы, благодаря которым клетки могут мигрировать и изменять свою форму. Например, растущий конец аксона, длинного отростка нервной клетки, выпускает длинные микрошипы - филоподии, длина которых может достигать 50 мкм. Внутри микрошипы содержат рыхлые пучки примерно из 20 актиновых филаментов, ориентированных плюс-концами наружу. Эти выступы клеточной поверхности очень подвижны и могут быстро появляться и исчезать. Предполагают, что они действуют подобно щупальцам, которыми клетка исследует окружающую среду. По-видимому, те микрошипы, которые прочно прикрепляются к какому-либо субстрату, направляют движение клетки в этом направлении. Микрошипы, которым прикрепиться к субстрату не удалось, втягиваются обратно. Некоторые природные вещества, например, цитохалазины, выделяемые различными плесневыми грибками избирательно влияют на процессы полимеризации и деполимеризации актина. Они способны специфически связываться с плюс-концами актиновых волокон и блокировать присоединение к ним новых мономеров актина. Используя эти вещества, ученые доказали, что механизм тредмиллинга играет важную роль в различных типах клеточных движений. В частности оказалось, что цитохолазины подавляют такие формы подвижности клеток позвоночных, как цитокинез, фагоцитоз, образование выростов и шипов. В тоже время эти вещества не влияют на деление клеток в результате сокращения сократимого кольца, в котором участвуют стабильные актиновые филаменты, не подвергающиеся сборке и разборке и на расхождение хромосом в митозе, которое зависит в основном от функции микротрубочек.
Микротрубочки образуются путем полимеризации молекул белка тубулина. Молекула тубулина является гетеродимерной, поскольку состоит из двух различных субъединиц - α- и β- тубулинов. Тубулин присутствует практически во всех эукариотических клетках. Особенно много этого белка в нейронах головного мозга позвоночных до 10-20 % от всего растворимого белка клетки. В ходе сборки молекулы тубулина укладываются, бок о бок по спирали, вокруг центральной области, которая на электронных микрофотографиях кажется пустой, образуя длинные, полые структуры, диаметром 24 нм. На один шаг спирали затрачивается 13 молекул тубулина. Активирует процесс полимеризации тубулина ГТФ, ионы Mg 2+ и физиологическая температура, а деполимеризации - ионы Ca 2+ и охлаждение. Подобно актиновым филаментам, микротрубочки являются полярными структурами, у которых есть плюс-концы, растущие быстро, и минус-концы, растущие медленно.
Рис. 8 Структура микротрубочек
Микротрубочки формируют в цитоплазме систему транспортных волокон. Она зарождается в начале интерфазы из области центриолей, в так называемых центрах организации микротрубочек и растет за счет процессов полимеризации вдоль длинной оси клетки, поддерживая тем самым удлиненную форму клетки в целом. Система цитоплазматических микротрубочек являются своеобразными "рельсами", по которым транспортируются различные пузырьки и органеллы. Благодаря транспортной системе микротрубочек вещества, включенные в пузырьки, быстро переносятся из одной области клетки в другую. Особенно интенсивно эти процессы протекают при так называемом быстром аксонном транспорте, в ходе которого транспортные пузырьки с большой скоростью переносятся от тела клетки к нервному окончанию на десятки сантиметров и обратно. Высокая концентрация тубулина в нервных клетках как раз и обусловлена наличием в этих клетках большого количества микротрубочек, связанных с системой быстрого аксонного транспорта. Кроме, транспортной функции, микротрубочки определяют (фиксируют) местоположение в клетке ЭР и аппарата Гольджи. Система цитоплазматических микротрубочек очень лабильна и видоизменяется в зависимости от состояния клетки. Например, в начале митоза она распадается и перестраивается в микротрубочки митотического веретена, которые соединяются с хромосомами в области центромеры и перемещают их сначала в область экватора делящейся клетки, где они образуют метафазную пластинку, а затем разводят их в дочерние клетки. Движущая сила в первом случае возникает за счет АТФ-зависимой полимеризации молекул тубулина и удлинения микротрубочек, во втором случае, напротив, активируются процессы деполимеризации, укорачивающие микротрубочки. В часто делящихся (недифференцированных) клетках микротрубочки митотического веретена пребывают в состоянии необычайно быстрой сборки и разборки, и это объясняет крайнюю чувствительность веретена к различным препаратам, способным связываться с тубулином. К таким веществам относится колхицин, один из алкалоидов безвременника осеннего, который использовался в лечебных целях еще древними египтянами. Колхицин прочно связывается с молекулами тубулина и препятствует тем самым их полимеризации. В зависимости от используемой концентрации он может задержать деление клетки в митозе или заблокировать процесс расхождения хромосом, что приводит к образованию клеток с диплоидным (двойным) набором хромосом. Действие колхицина обратимо и удаление препарата, во многих случаях, дает возможность веретену образоваться, а митозу завершиться. Вещества, блокирующие рост микротрубочек, называются антимитотическими агентами. Так как нарушение роста микротрубочек митотического веретена особенно пагубно сказывается на быстро делящиеся клетки и, в первую очередь, раковые, ряд антимитотических препаратов, в частности винбластин и винкристин, широко используется в терапии опухолей.
Многие клетки имеют реснички, а некоторые жгутики. Структурной основой ресничек и жгутиков являются цилиндрические пучки из девяти так называемых дублетов микротрубочек расположенных по окружности и одной центральной пары микротрубочек. Дублеты, каждый из которых образован двумя слившиеся микротрубочками, способны за счет энергии гидролиза АТФ перемещаться относительно друг друга, аналогично тому, что происходит в случае актиновых филаментов, только передвигает дублеты друг относительно друга не миозин, а другой белок с АТФ-азной активностью - динеин. Синхронное скольжение дублетов преобразуется в изгиб реснички или жгутика. В организме человека огромное количество ресничек (10 9 /см 2 ), имеют клетки эпителия бронхов и других влажных поверхностей. Каждая такая клетка имеет до нескольких сотен ресничек, длиной 5-15 мкм. Реснички движутся координировано, при этом циклы движения соседних ресничек едва заметно сдвинуты во времени, вследствие чего на поверхности клетки образуются однонаправленные бегущие волны. В бронхах волнообразные движения ресничек, непрерывно, со скоростью 6 мм/мин перемещают из легких к полости носа, а затем наружу слизь с частицами пыли.
Рис. 9 Структура промежуточных филаментов
Молекулярные основы эпителиально-мезенхимального перехода и его роль в развитии и метастазировании опухоли.
Случалось ли вам когда-нибудь желать себе обладания каким-нибудь сверхъестественным умением? Например, становиться невидимым или проходить сквозь стены? Думаю, многие не раз грезили в детстве о том, какие ловкие штуки могли бы проворачивать, будь у них какая-то эдакая способность, ставящая на порядок выше нашего мира, подчинённого обыденным устоям и правилам. Вероятно, клетки нашего организма тоже не все хотят быть такими же, как большинство, и при определённых обстоятельствах обзаводятся новыми способностями, действительно отличающими их от остальных. Но чем может обернуться такая эгоистичность для целого организма? Как вариант — зарождением опухолевого очага и стремительным распространением клеток, которые уж точно больше не серая масса, а целая гетерогенная популяция, настоящие бунтари, лишённые альтруизма и любви к своим собратьям по организму. И в сегодняшнем посте речь поведём именно о том, каким образом клетки одного типа могут принимать иную форму и какое место это событие занимает в развитии и распространении опухоли.
Под эпителиально-мезенхимальной трансформацией (ЭМТ) понимается процесс, при котором покоящиеся эпителиальные клетки теряют свои межклеточные контакты и принимают мезенхимальную форму. Они приобретают способность к миграции через базальную мембрану, а значит, могут по кровеносному или лимфатическому руслу попасть в любые сколь угодно отдалённые от своего исходного местонахождения ткани, где путём обратной трансформации в эпителиальные клетки (мезенхимально-эпителиальный переход) формируют новые структуры. Физиологически этот процесс играет значимую роль при заживлении ран и в ходе эмбрионального развития организма. Так, например, ЭМТ лежит в основе формирования сердца, закладки большинства краниофациальных структур, а также скелетных мышц и периферической нервной системы. Да и вообще, ни один организм не разовьётся дальше стадии бластулы, не будь эпителиально-мезенхимального перехода. Однако в то же время данное явление находит своё место и в контексте патологической физиологии. ЭМТ способствует прогрессии опухолевых заболеваний за счёт того, что озлокачествленные эпителиальные клетки получают способность к проникновению в сосудистое русло, то есть, им открывается прямой путь к метастазированию. Также эпителиальные клетки, претерпев ЭМТ, могут быть задействованы в фибротических процессах: чрезмерная продукция белков внеклеточного матрикса фибробластоидными клетками может вести к функциональным нарушениям той или иной ткани.
Хотя уже в конце XIX в. эпителиальные и мезенхимальные клетки были известны как два основных типа клеток, а процесс перехода между этими двумя типами был описан в 1908 г., эпителиально-мезенхимальный переход как таковой был идентифицирован как самостоятельный процесс впервые лишь в 1982 г. Вскоре после этого было обнаружено, что если инкубировать эпителиальные клетки в среде, в которой были культивированы фибробласты, то эпителиоциты разобщаются и превращаются в мигрирующие мезенхимальные клетки. Поначалу фактор, определённый как ответственный за данную трансформацию, получил обозначение “scatter factor”, а позднее был назван фактором роста гепатоцитов (HGF), поскольку была обнаружена его роль в качестве митогена для клеток ткани печени, участвующего в регенерации печени. В экспериментах in vitro было указано на то, что HGF опосредует ЭМТ посредством активации тирозинкиназных рецепторов c-Met, кодируемых протоонкогеном. Помимо HGF и другие факторы роста осуществляют вклад в индукцию ЭМТ путём стимуляции тирозинкиназных рецепторов (как in vitro, так и in vivo), как, например, фактор роста фибробластов (FGF), инсулиноподобный фактор роста (IGF), эпителиальный фактор роста (EGF). Кроме того, большое значение придаётся трансформирующему фактору роста бета (TGF-β), который берёт на себя ключевую роль в инициации и поддержании ЭМТ как в процессе эмбрионального развития, так и при опухолевой прогрессии. Часто перечисленные факторы действуют синергетически, усиливая эпителиально-мезенхимальный переход.
Характеристика пусковых факторов и вовлечённых сигнальных путей имеет огромное значение, поскольку трансформационный процесс рассматривается непосредственно как терапевтическая мишень в контексте разработки лекарственных препаратов, направленных на борьбу с фиброзами и инвазивными опухолями. Целесообразным было бы ингибировать и пути сигнальной передачи, которые наряду с ЭМТ способствуют также ангиогенезу.
Рисунок 1 | Факторы, запускающие ЭМТ.
Итак, в ходе ЭМТ эпителиальные клетки теряют свою апикобазальную полярность и приобретают фибробластоподобный фенотип. Вследствие потери контактов с соседними клетками эпителиоциты высвобождаются из системы межклеточных связей в организованной эпителиальной ткани. После реструктуризации актинового цитоскелета клетки могут мигрировать через экстрацеллюлярный матрикс, что опосредовано тем, что на этой стадии клетки в состоянии синтезировать характерные мезенхимальные белки, дающие возможность устанавливать клеточно-матриксные связи. Также клетки вырабатывают матриксдеградирующие протеазы, разрушающие базальную мембрану и облегчающие тем самым инвазию трансформированных клеток в кровеносное и лимфатическое русло. Давайте остановимся теперь на каждом пункте чуть подробнее.
Плотные контакты (tight junctions), связывающие клетки в эпителиальных тканях, служат для поддержания целостности ткани, обеспечивают взаимодействие клеток друг с другом, а также выполняют барьерную функцию, принимая участие в регуляции проницаемости эпителия путём ограничения парацеллюлярного транспорта, и придают клеткам полярность благодаря своей организации преимущественно в апикальной области (zona occludens). Формируются плотные контакты за счёт трансмембранных белков окклюдинов и клаудинов, которые связываются с актиновым цитоскелетом через внутриклеточные белки, как например, ZO-1 (zona occludens protein 1). Адгезионные контакты (adherens junctions) представляют собой гомодимерные межклеточные контакты, характеризующиеся связью через классические кадгерины (находятся в зависимости от ионов кальция; типичные примеры — Е-кадгерин, N-кадгерин). Пронизывающие мембрану кадгерины связаны, опять же, с внутренней стороны с цитоскелетом посредством бета- и альфа-катенинов и винкулина или плакоглобина. Десмосомы, распределяющие силы напряжения по всему объёму ткани, противостоят разрывам и смещениям, то есть, важны для стабилизации ткани. Десмосомы соседних клеток связаны друг с другом за счёт трансмембранных десмосомальных кадгеринов (десмоколлины и десмоглеины), а также скреплены с кератиновыми волокнами с помощью цитоплазматических партнёров — плакоглобина и десмоплакина. Десмосомы и адгезионные контакты классификационно причисляются к заякоривающим соединениям, а плотные контакты — к запирающим.
Таким образом, при утрате того или иного соединения какой-либо клетки с окружающими содержание соответствующих контактных белков резко снижено. По этой причине эти белки годятся для трансформационного статуса эпителиальных клеток. Например, в качестве маркеров ЭМТ нередко используются многие из уже упомянутых белков — ZO-1, бета-катенин, Е-кадгерин, а также цитокератин. Снижение экспрессии или функциональной активности Е-кадгерина является крайне важной информацией о развитии опухоли, поскольку наблюдается в канцерогенезе множества злокачественных опухолей и связано с индукцией ЭМТ, а потому представляется и весьма существенным признаком инвазивного роста опухоли. Ослабление адгезионных контактов осуществляется как путём передислокации Е-кадгерина из цитоплазматической мембраны в цитоплазму, так и опосредованно через генетическую регуляцию. Белки типа цинкового пальца Snail и Slug препятствуют транскрипции Е-кадгерина, зацепляясь на специальном сайте связывания промотора гена Е-кадгерина (Е-бокс, Enhancer Box). Также Snail и Slug регулируют активацию TGF-β через Smad3. Кроме того, FGF и HGF оказывают влияние на межклеточные контакты через активирование Slug. Slug (но не Snail) принимает участие и в ЭМТ-ассоциированном заживлении ран, что совпадает с данными по различиям экспрессии гена Slug, полученными в исследованиях культуры иммортализованных нетуморогенных кератиноцитов линии НаСаТ и линии человеческих эпителиоцитов почек НК-2: если в культуре НаСаТ TGF-β индуцировал синтез только Slug, то в ренальных эпителиоцитах контроль был сосредоточен именно на белке Snail.
Среди прочих факторов, оказывающих влияние на экспрессию Е-кадгерина, хотелось бы упомянуть EF1 (энхансер-связывающий фактор гамма-кристаллина), SIP1, c-Fos. EF1 и SIP1 могут управлять как транскрипцией генов белков Smad, так и, аналогично белкам Snail и Slug, напрямую взаимодействовать с промотором гена Е-кадгерина и, блокируя экспрессию Е-кадгерина, провоцировать развитие инвазивного фенотипа клетки. Эктопическая экспрессия c-Fos, например, в эпителии молочной железы, может вести к трансформации. Вообще, при кратковременной активации c-Fos потеря апикально-базальной полярности могла бы быть обратима, однако в этом случае аутокринное воздействие продуцируемого TGF-β становится инструментом поддержания ЭМТ. Так, в клетках линии НаСаТ к началу ЭМТ наблюдалась опосредованная через ERK (extracellular signal-regulated kinases) стимуляция трансформирующим фактором роста бета эктопической активности c-Fos.
Также с промотором гена Е-кадгерина способен связываться белок семейства bHLH (basic helix-loop-helix) E2A. В норме Е2А транскрипционно неактивен и представлен в виде димеров с белками ингибиторами дифференцировки (ID). В культивируемых на микроносителях эпителиальных клетках ID2 и ID3 оказываются целью воздействия TGF-β и ВМР7 (bone morphogenetic protein 7, костный морфогенетический белок): TGF-β сдерживает экспрессию ID2, вследствие чего активируется Е2А, который снижает транскрипцию гена Е-кадгерина; а ВМР7 проявляет себя антагонистически, повышая экспрессию ID2 и защищая тем самым эпителиальные клетки от трансформирующих влияний.
Важным регулятором ЭМТ как in vitro, так и in vivo проявил себя также относящийся к белкам bHLH фактор транскрипции Twist, эктопическая экспрессия которого становится причиной снижения транскрипции опять же Е-кадгерина, альфа-, бета- и гамма-катенинов. Также Twist способствует активности таких мезенхимальных маркеров, как фибронектин, виментин, альфа-гладкомышечный актин (alpha-SMA), N-кадгерин. А некоторые прочие факторы транскрипции, кроме регуляции прочности адгезионных контактов, оказывают влияние и на другие характеристики ЭМТ. Так, ID2 может препятствовать синтезу alpha-SMA; SIP1 регулирует экспрессию виментина, а в некоторых типах клеток наряду с белком Snail повышает экспрессию матриксной металлопротеиназы 2 (ММР-2); Snail может влиять на ряд существенных для ЭМТ генов (было обнаружено в клетках меланомы), среди которых гены ММР-2 и малых G-белков семейства Rho (RhoA).
Разобравшись с потерей межклеточных контактов, обратимся к тому, в чём же заключается реструктуризация цитоскелета. Для эпителиальных клеток в связи с их полярностью характерен так называемый пояс актина, волокна которого участвуют в создании адгезионных и плотных контактов, являя собой мощное дополнение периферическому актину, также задействованному в поддержании межклеточных соединений. В мезенхимальных клетках актин, напротив, представлен в виде филоподий (толстые пучки актина, цилиндроподобно вытянутые в сторону передвижения клетки), ламеллоподий (тонкие сети на переднем конце клетки, инициирующие движение клетки вперёд; придают клеточной мембране характерный внешний вид) и стрессовых волокон (пучки коротких актиновых филаментов с добавлением миозиновых филаментов; простираются параллельно продольной оси тела клетки и, сокращаясь, тоже продвигают клетку вперёд), которые поддерживают миграцию клеток. Актиновые стрессовые волокна связаны со внутренней поверхностью цитоплазматической мембраны посредством интегринов и фокальных адгезионных комплексов, имеющих в своём составе структурные белки (талин, винкулин, альфа-актинин) и некоторые протеинкиназы (например, FAK — киназа фокальных контактов). Полимеризация актина находится под контролем белков семейства Rho, куда относятся, к примеру, Rho, Rac и Cdc42, которые, приобретая активированную форму, инициируют образование как актиновых стрессовых волокон, так и адгезионных комплексов: Rac опосредует формирование ламеллоподий, Cdc42 принимает участие в образовании филоподий. Таким образом, при запуске ЭМТ белки семейства Rho представляют собой наиважнейшие целевые структуры для влияния TGF-β.
Рисунок 2 | Этапы метастазирования.
После того, как произошло переформирование внутриклеточных актиновых структур, клетка может приступать к миграции сквозь джунгли внеклеточного матрикса. Для этого ей необходимо умение образовывать новые контакты между собственными интегринами и белками матрикса. Интегрины оснащены специальными участками для связывания с матриксными белками, и благодаря RGD-последовательности интегрины распознают белки матрикса. Кроме чисто механического связывания, трансмембранные интегрины могут подвергаться контролю по типу inside-out-signalling: например, внутриклеточные киназы, связываясь с внутриклеточными участками интегринов, могут изменять их внеклеточные участки для связывания с лигандами. Но и наоборот, связывание интегринов с лигандами ведёт к внутриклеточному каскаду взаимодействий, следствием которого может быть активация FAK или белков Rho.
Ещё одна важная черта, характеризующая нормальные эпителиальные клетки — связь с базальной пластинкой посредством гемидесмосом. В ходе эпителиально-мезенхимальной трансформации клетки эпителия отделяются от базальной пластинки и начинают разрушать коллаген IV, ламинин, нидоген, из которых она построена. Для этой цели клетки вырабатывают матриксные металлопротеиназы ММР-2 и ММР-9. Структура всех ММР во многом сходна. Поначалу все ММР синтезируются как неактивные предшественники — Pro-MMPs, которые затем активируются после ферментативного отщепления продомена (эти продомены почти у всех ММР представляют собой консервативные последовательности, в которых присутствует цистеин, ответственный за связывание цинка в активном центре протеазы; поэтому только в отсутствие продомена цинк беспрепятственно связывается с активным центром и активирует протеазу). Также ММР обладают субстратспецифичными связывающими мотивами, на чём основано их разделение на подгруппы.
После такого краткого пробега по основным этапам ЭМТ хотелось бы завершить пост и после прочтения предложить вам ознакомиться с замечательным переводом Медача, посвященным эпителиально-мезенхимальной пластичности и её роли как регулятора опухолевой прогрессии. Перевод читать тут: vk.cc/6AwriY
Теория скольжения филаментов
Взаимодействие мышечных белков лежит в основе нашего нынешнего понимания сокращения саркомера. Как оно происходит? Это как-то связано со скользящим взаимодействием между актином и миозином.
Основные понятия
Перед тем, как углубиться в физиологию, ознакомимся с основной терминологией.
На электронной микрофотографии тонкого среза мышечных волокон изображена группа нитей.
Рисунок 1. 1 — тонкие нити (I тип, красные нити) — не интенсивная, длительная работа.
2 — толстые нити (II тип, белые нити) — интенсивная и кратковременная работа.
Каждый массив нитей — миофибрилла — имеет форму цилиндра, внутри которого чередуются пучки тонких и толстых нитей. Внутри волокна нити находятся в строгом порядке, так что области с одинаковой плотностью находятся рядом друг с другом, за счет чего волокно имеет характерную полосатую окраску в поляризованном световом микроскопе. Единица между двумя темными полосами — саркомер.
В продольном разрезе группы миофибрилл имеется полоса низкой плотности, называемая I-полосой. В центре I-полосы имеется заметная плотная линия, называемая Z-диском. Область между двумя линиями Z — саркомером — может считаться основной структурной и функциональной единицей, непосредственно ответственной за сокращение мышц. Таким образом, миофибриллу можно рассматривать как группу саркомеров.
Группа миофибрилл образует симпласт. На поверхности мышечной клетки плазматическая мембрана (сарколемма) образует впячивания, где формируется система Т-трубочек, обеспечивающая сокращение миоцитов. Представляет собой сеть взаимосвязанных колец, каждое из которых окружает миофибриллу и обеспечивает важный путь коммуникации между наружной частью волокна и миофибриллами, которые расположены глубоко внутри волокна.
Другая мембранная система, которая окружает каждую миофибриллу — саркоплазматический ретикулум, образующий ряд закрытых мешковидных мембран. Участок, контактирующий с Т-трубочкой, образует увеличенный мешок, называемый терминальной цистерной. У большинства позвоночных каждая Т-трубочка имеет две цистерны, тесно связанные с ней, образуя трехэлементный комплекс, называемый триадой. Количество триад на саркомер зависит от вида. Например, в мышце лягушки есть одна на триаду, а в мышцах млекопитающих — две. У рыб и ракообразных только одна цистерна связана с каждой поперечной трубочкой, образуя диаду.
Мышечные белки
Основной составляющей толстых нитей является миозин. Каждая толстая нить состоит из около 250 молекул миозина. Миозин играет две важные роли: структурную как строительный блок для толстых нитей и функциональную как катализатор распада АТФ во время сокращения и взаимодействия с актином в составе силового генератора мышц. Хвост длиной около 120 нм состоит из двух цепей белка, каждая из которых намотана на так называемую α-спираль, вместе образуя структуру спиральных катушек. На другом конце молекулы две белковые цепи образуют две глобулярные головные области, которые обладают способностью сочетаться с белковым актином и несут ферментативные сайты для гидролиза АТФ.
В средней части толстой нити молекулы собраны в хвост-хвост. Вдоль остальной части нити наматываются с головы до хвоста. Хвостовые части молекул образуют сердцевину нити; головные части выступают из нити.
Тонкие нити содержат три разных белка: актин, тропомиозин и тропонин. Актин, составляющий около 25 % белка миофиламентов, является основным компонентом тонких нитей в мышцах. Актиновые молекулы повторяются каждые 2,75 нм вдоль тонкой нити. Они создают спиральную структуру, которая может рассматриваться как двойная или одинарная спираль.
Тропомиозин представляет собой стержнеобразную молекулу длиной около 40 нм. Имеет структуру, аналогичную структуре хвоста миозина, являющейся спиральным звеном двух белковых цепей. Каждая молекула тропомиозина находится в контакте с семью актиновыми единицами.
Тропонин представляет собой комплекс из трех различных субъединиц белка: I, T и C. Тропонин С может связывается с кальциевыми ионами. Тропонин T присоединяется к тропомиозину, образуя с ним тропонин-тропомиозиновый комплекс. Тропонин I соединяется с актином в тонких филаментах. Один тропониновый комплекс связан с каждой молекулой тропомиозина. Молекула тропонина расположена примерно каждые 40 нм вдоль нити.
Тропонин и тропомиозин участвуют в регуляции сокращения и расслабления мышц. Одной из субъединиц является рецептор для Ca 2+ , высвобождаемый из саркоплазматического ретикулума при активации мышцы. Считается, что связывание кальция затем приводит к дальнейшим структурным изменениям взаимодействия актина, тропомиозина и другой субъединицы тропонина, которые приводят к сокращению путем активации взаимодействия актин-миозин.
Историческая справка
В 1954 году ученые опубликовали две новаторские статьи, описывающие молекулярную основу сокращения мышц. В этих работах описывалось положение миозиновых и актиновых филаментов на разных стадиях сокращения мышечных волокон и предлагалось, как это взаимодействие вызывает сократительную силу. Используя микроскопию высокого разрешения, А. Ф. Хаксли и Р. Нидерберг (1954) и Х. Э. Хаксли и Дж. Хансон (1954) наблюдали изменения в саркомерах по мере сокращения мышечной ткани. Они заметили, что одна зона повторного саркомера, «полоса А», оставалась относительно постоянной по длине во время сокращения. Полоса А содержит толстые нити миозина. Предполагалось, что миозиновые нити остаются центральными и постоянными по длине, в то время как другие области саркомера сокращаются.
Эти наблюдения побудили их предложить теорию скользящих нитей, в которой говорится, что скольжение актина относительно миозина вызывает напряжение мышц. Поскольку актин привязан к структурам, расположенным на боковых концах каждого саркомера, называемых z-дисками или «z-полосами», любое сокращение длины нити актина приведет к сокращению саркомера и, следовательно, мышцы.
Механизм сжатия
Когда нервный импульс от головного и спинного мозга переносится по двигательному нейрону в мышечное волокно, Ca 2+ ионы высвобождаются в терминальном аксоне.
Увеличение концентрации ионов кальция стимулирует высвобождение нейротрансмиттера ацетилхолина в синаптической щели.
Нейротрансмиттер связывается с рецептором на сарколемме, происходит деполяризация, и генерируется потенциал действия через мышечное волокно для сокращения мышц. Потенциал действия распространяется по всему мышечному волокну и перемещается в соседние волокна вдоль Т-трубочек.
Инициируется выделение ионов кальция из саркоплазматического ретикулума, которые стимулируют сокращение мышц. Последовательность сокращения мышц, объясняемая моделью скользящих нитей, выглядит следующим образом:
1. Блокировка головной части миозина:
Актин и миозин перекрывают друг друга, образуя поперечный мостик. Поперечный мостик активен только тогда, когда головка миозина прикреплена, как крючок, к нити актина. Когда мышца находится в состоянии покоя, перекрытие актиновой нити к головке миозина блокируется тропомиозином. Миофиламент актина находится в положении покоя.
2. Выделение иона кальция:
Нервный импульс, вызывающий деполяризацию и потенциал действия в сарколемме, вызывает выброс ионов кальция. Ион кальция связывается с тропониновым комплексом на нити актина, сдвигая тропомиозин из его места блокировки. Миофиламент актина находится в активном положении.
3. Поперечный мостик:
Поперечный мостик между актином и миозином действует как фермент (миозин АТФ-аза), который гидролизует АТФ, хранящийся в головке миозина, в АДФ, вследствие чего высвобождается энергия. Эта освобожденная энергия используется для перемещения головки миозина в направлении актиновой нити. Головка миозина наклоняется и тянет актиновую нить так, что миозин и актиновая нить скользят друг к другу. Противоположные концы нитей актина в саркомере движутся в направлении друг к другу, что приводит к сокращению мышцы. После сближения поперечный мостик отсоединяется, а актин и миозиновая нить возвращаются в исходное положение.
Аналогия, наглядно иллюстрирующая теорию
Представьте, что вы стоите между двумя большими шкафами с книгами. Они находятся на расстоянии нескольких метров друг от друга и расположены на рельсах, так что их можно легко перемещать. Вам дается задача объединить два книжных шкафа, но вы ограничены использованием только ваших рук и двух веревок. Стоя в центре между книжными шкафами, вы тянете за две веревки (по одной на руку), которые надежно привязаны к каждому книжному шкафу. Повторяющимися движениями вы подтягиваете каждую веревку к себе, перехватываете ее, а затем снова тянете. В конце концов книжные шкафы движутся вместе и приближаются к вам. В этом примере ваши руки похожи на молекулы миозина, веревки — это актиновые нити, а книжные шкафы — это z-диски, на которых закреплен актин и которые составляют боковые концы саркомера. Подобно тому, как вы остаетесь в центре между книжными шкафами, миозиновые нити остаются центрированными во время нормального сокращения мышц.
Регуляция
АТФ поставляет энергию, как и было описано выше, но что делает кальций? Кальций требуется двум белкам (тропонину и тропомиозину), которые регулируют сокращение мышц. В покоящемся саркомере тропомиозин блокирует связывание миозина с актином. В вышеупомянутой аналогии вытягивания шкафов тропомиозин будет мешать вашей руке, поскольку он будет удерживать актин-веревку.
В 1994 году Уильям Леман и его коллеги продемонстрировали, как тропомиозин вращается, изучая форму актина и миозина в богатых кальцием растворах и растворах, содержащих низкий уровень кальция (Lehman, Craig, & Vibertt, 1994). Сравнивая действие тропонина и тропомиозина в этих двух условиях, они обнаружили, что присутствие кальция является существенным для механизма сжатия. В отсутствие свободного кальция связывание актина и миозина не происходит, поэтому наличие свободного кальция является важным регулятором мышечного сокращения.
Нерешённые вопросы
Ученым предстоит выяснить о нескольких белках, которые явно влияют на сокращение мышц. Например, молекулы, такие как титин, необычно длинный и «упругий» белок, охватывающий саркомеры у позвоночных, предположительно связывается с актином. Кроме того, ученые исследовали мышечные клетки, которые сокращаются по иному принципу. Например, некоторые мышцы у моллюсков и членистоногих выдерживают силовую нагрузку в течение долгого времени — явление, иногда называемое «уловкой» или силовым гистерезисом (Hoyle, 1969). Изучение этих и других примеров пластичности мышц — захватывающие возможности для новых открытий в биологии.
Микрофибриллярная система или система микрофиламентов (актин-миозин).
Микрофиламенты встречаются во всех клетках эукариот. Особенно они обильны в мышечных волокнах и клетках - высокоспециализированных клетках, выполняющих функции сокращения мышц. Микрофиламенты (МФ) входят также в состав специальных клеточных компонентов, таких как микроворсинки, ленточные соединения эпителиальных клеток, в состав стереоцилий чувствительных клеток. МФ образуют пучки в цитоплазме подвижных клеток животных, и образуют слой под плазматической мембраной - кортикальный слой. У многих растительных клеток и клеток низших грибов они располагаются в слоях движущейся цитоплазмы.
Основным белком микрофиламентов является актин. Актин - неоднородный белок, в различных клетках могут быть разные его варианты или изоформы, каждая из которых кодируется своим геном. Так, у млекопитающих есть 6 различных актинов: один в скелетных мышцах, один в сердечной мышце, два типа - в гладких мышцах (один из них в сосудах), и два, немышечных, цитоплазматических актина, являющихся универсальным компонентом любых клеток млекопитающих. Все эти изоформы актина очень сходны по аминокислотным последовательностям, вариантными в них являются концевые участки, которые определяют скорость полимеризации, но не влияют на сокращение. Такое сходство актинов, несмотря на некоторые отличия, определяет их общие свойства. Актин имеет молекулярный вес около 42 тыс. и в мономерной форме имеет вид глобулы (G-актин), содержащей в своем составе молекулу АТФ. При его полимеризации образуется тонкая фибрилла (F-актин) толщиной 8 нм, представляющая собой пологую спиральную ленту. Актиновые микрофиламенты полярны по своим свойствам. При достаточной концентрации G-актин начинает самопроизвольно полимеризоваться. При такой спонтанной полимеризации актина на образовавшейся нити микрофиламента один из ее концов быстро связывается с G-актином (+)- конец микрофиламента) и поэтому растет быстрее, чем противоположный (минус-конец). Если концентрация G-актина будет недостаточной, то образовавшиеся фибриллы F-актина начинают разбираться. В растворах, содержащих т.н. критическую концентрацию G-актина, будет устанавливаться динамическое равновесие между полимеризацией и деполимеризацией, в результате чего фибрилла F-актина будет иметь постоянную длину ( 247). Из этого следует, что актиновые микрофиламенты представляют собой очень динамичные структуры, которые могут возникать и расти или же, наоборот, разбираться и исчезать в зависимости от наличия глобулярного актина. На растущем конце нити актина встраиваются мономеры, содержащие АТФ. По мере нарастания полимера происходит гидролиз АТФ, и мономеры остаются связанными с АДФ. Молекулы актина, связанные с АТФ, прочнее взаимодействуют друг с другом, чем мономеры, связанные с АДФ.
В клетках такая, казалось бы, неустойчивая фибриллярная система, стабилизируется массой специфических белков, ассоциирующих с F-актином. Так, белок тропомиозин, взаимодействуя с микрофиламентами, придает им необходимую жесткость. Целый ряд белков, например филамин и a-актинин образуют поперечные скрепки между нитями F-актина, что приводит к образованию сложной трехмерной сети, придающей гелеобразное состояние цитоплазме. Другие дополнительные белки могут связывать филаменты в пучки (фимбрин) и т.д. Кроме того, существуют белки, взаимодействующие с концами микрофиламентов и предотвращая их разборку, стабилизируют их. Взаимодействие F-актина со всей этой группой белков регулирует агрегатное состояние микрофиламентов, их рыхлое или наоборот тесное расположение, связь их с другими компонентами. Особую роль при взаимодействии с актином играют белки миозинового типа, которые образуют вместе с актином комплекс, способный к сокращению при расщеплении АТФ (см. ниже) ( 262).
Таким образом, МФ представляют собой фибриллы полимеризованного актина, связанного с многими другими белками. В принципе микрофиламенты во всех немышечных клетках могут осуществлять по крайней мере два ряда функций: быть частью сократительного аппарата, взаимодействуя с моторными белками (миозин), или участвовать в формировании скелетных структур, способных к собственному движению за счет процессов полимеризации и деполимеризации актина.
Особенно много сведений о цитоскелете, и о микрофиламентах получено при изучении фибробластов в культуре ткани, обладающих способностью к амебоидному движению. Эти клетки не имеют ответственных за движение постоянных фибриллярных структур, их фибриллярный аппарат все время находится в реорганизации: часть фибриллярных элементов разбирается в одних участках клетки и новообразуется в других.
Обычно ползущий по поверхности субстрата фибробласт поляризован: у него есть движущийся конец и “хвостовой” отдел.На движущемся конце, который часто более распластан по субстрату, чем боковые и хвостовые участки фибробласта, постоянно возникают и убираются тонкие нитевидные или пластинчатые выросты - ламеллоподии. Это - ведущий край клетки (ламеллоплазма). Который и обеспечивает движение фибробласта вперед. В таком движущемся фибробласте с помощью антител можно узнать места расположения актина. Он будет распределяться по трем основным частям клетки: он в виде тонкого слоя (1) располагается по всему периметру клетки под плазматической мембраной. Это кортикальный (cortex - кора) слой. Обильно актин выявляется в выростах цитоплазмы ведущего края клетки (2) и (3) в пучках актиновых филаментов, отходящих от ведущего края вглубь клетки ( 245).
Кортикальный слой состоит из плотной трехмерной сети актиновых филаментов, ассоциированных с плазматической мембраной (таб. ). Он обеспечивает механическую устойчивость поверхностному слою цитоплазмы и создает условия, позволяющие клетке изменять свою форму и двигаться. Этот слой постоянно меняет свое агрегатное состояние, переходя из состояния структурированного геля в жидкий золь. Такие переходы гель-золь связаны с изменениями в структуре кортикального слоя. Здесь в ассоциации с актиновыми филаментами находятся фибриллярные белки-стабилизаторы (например, филамин), которые образуют сшивки в местах пересечения филаментов, что придает жесткость всему кортикальному слою. Однако эта жесткость может быть легко снята за счет взаимодействия с другими белками, такими как гельзолин, которые вызывают фрагментацию и разборку филаментов и тем разжижают гель. Такая перестройка подмембранного слоя особенно выражена в ведущем крае, что позволяет быстро менять форму его поверхности, образовывать ламеллоподии и двигаться вперед. С другой стороны сеть актиновых филаментов способна к сокращению, т.к. в ней обнаружены короткие миозиновые агрегаты. Это приводит или к втягиванию ламеллоподий или же к подтаскиванию клеток вперед. Сеть актиновых филаментов в ведущем крае организована более определенно, чем в остальном кортексе. Здесь от небольших начальных выростов плазмалеммы внутрь клетки отходят пучки актиновых филаментов, оканчивающихся своими (+)-концами на плазматической мембране.
Сам процесс образования актиновых филаментов и их роста в зоне ламеллоплазмы зависит от ряда регуляторных белков. Один из них белок WASp/Scar связывается с плазматической мембраной. В его составе есть участки, связывающиеся с актином, другой специальный белковый комплекс Arp2/3, который связывается с (-)-концом растущей цепи полимера, препятствуя его деполимеризации. Такие сложные взаимодействия двух групп регуляторных белков приводят к тому, что на границе с плазматической мембраной происходит надстраивание растущих филаментов, которые могут прогибать плазматическую мембрану так, что возникает тонкий вырост - филоподия ( 250).
Иначе происходит полимеризация актина при образовании ламеллоподий. Здесь также ведущую роль играют белки WASp/Scar, которые закрепляются на плазматической мембране и связываются с комплексом Arp2/3и прикрепляют его к боковой поверхности уже готовой актиновой фибриллы. Комплекс Arp2/3 инициирует полимеризацию новой актиновой фибриллы, которая начинает расти под углом около 700 по отношению к первичной нити актина и закрепляется на плазматической мембране. Таких новых белковых цепей возникает несколько, и они как бы веером простираются к плазматической мембране и толкают ее вперед. Так образуется псевдоподия или ламеллоподия ( 251) За счет наращивания актиновых филаментов на (+) концах. Одновременно с этим происходит деполимеризация тех (-) концов филаментов, которые не заблокированы комплексами Arp2/3 и подвергаются воздействию белков, способствующих деполимеризации МФ.
Таким образом сложный процесс роста МФ приводит к перемещению в пространстве края движущейся клетки. По мере возникновения ламеллоподий их плазматическая мембрана с помощью белков интегринов образует с субстратом фокальные контакты, от которых отходят пучки актиновых филаментов, участвующие уже в другой форме подвижности, связанной со взаимодействиями между актиновыми филаментами и моторными белками-миозинами.
Миозины являются одним из составных компонентов МФ. Основная работа по перемещению клеток или их внутренних компонентов с помощью МФ происходит за счет работы акто-миозинового комплекса, где актиновые фибриллы играют роль направляющих (“рельсы”), а миозины - транслокаторы. Весь акто-миозиновый комплекс представляет собой АТФ-азу, и движение происходит за счет энергии гидролиза АТФ.
Миозины представляют собой семейство сходных белков. У всех из них есть головная (моторная ) часть, отвечающая за АТФ-азную активность комплекса, шейка, которая связана с несколькими регуляторными белковыми субъединицами и хвост, характерный для каждого типа миозина, определяющего специфичность функции в клетке. Существуют три основных типа миозинов. Миозин II и миозин V являются димерами, у которых a-спиральный участок хвоста образует сверхспиральный палочковидный участок. Миозин I представляет собой мономерную молекулу ( 252). Две молекулы миозина II могут ассоциировать друг с другом, образуя биполярную толстую фибриллу, участвующую в мышечном сокращении, при сокращении внутриклеточных пучков МФ и при делении клетки. Миозины I и V типа участвуют во взаимодействиях между элементами цитоскелета и мембранами, например в транспорте везикул.
Механизмы работы актомиозиновых комплексов очень сходен, независимо от типа миозина: он начинается со связи миозиновой головки с актиновым филаментом, ее изгибанием и последующим откреплением. За каждый цикл миозиновая головка перемещается в направлении (+)-конца актинового филамента на 5-25 нм при гидролизе одной молекулы АТФ. Таким образом происходит однонаправленное смещение или скольжение МФ относительно молекул миозина
Читайте также:
- УЗИ, ЭхоКГ при брадиаритмии у плода
- Оценка строения синуса. Оценка капсулы лимфатического узла.
- Осложнения местной анестезии. Недостатки местной анестезии в грудной хирургии
- КТ при злокачественной амелобластоме и амелобластическом раке челюсти
- Тепловой удар спортсменов. Возмещение потери хлорида натрия и калия у спортсменов