Потенциал действия и его распространение в нервных клетках
Добавил пользователь Валентин П. Обновлено: 14.12.2024
В большинстве нервных клеток порог возбудимости разных ее участков неодинаков. Он ниже всего в области аксонного холмика и начального сегмента аксона и выше в области сомы. Дендриты, как правило, имеют еще более высокий порог. Поэтому потенциал действия обычно возникает в области начального сегмента аксона и уже оттуда распространяется по аксону (ортодромно) и на тело клетки (антидромно).
Если ввести в тело клетки микроэлектрод, позволяющий регистрировать потенциал действия, то можно видеть, что последний имеет характерную форму (рис. 61), демонстрирующую наличие двух основных компонентов. Первый компонент обусловлен активацией зоны начального сегмента и аксонного холмика, второй — тела и дендритов нейрона. Задержка между первым и вторым компонентами обусловлена тем, что более высокий порог возбудимости тела нейрона и значительное увеличение поверхности мембраны при переходе из аксонного холмика в тело нейрона затрудняют распространение потенциала действия на сомато-дендритическую мембрану.
После окончания потенциала действия во многих нейронах ЦНС наблюдается длительная следовая гиперполяризация. Она особенно хорошо выражена в мотонейронах спинного мозга.
Активация калиевой проводимости выражается в развитии следовой гиперполяризации, наблюдаемой после окончания потенциала действия. Если заменить ионы кальция в окружающей нейроны среде на ионы марганца, для чего необходимо осуществлять изоляцию и перфузию участка мозга, следовая гиперполяризация обратимо блокируется (рис. 61, б).
Следовая гиперполяризация играет важную роль в регуляции частоты потенциалов действия, генерируемых нервной клеткой. Способность нейрона отвечать ритмическими разрядами импульсов на длительную деполяризацию, создаваемую потоком импульсов, поступающих на его синапсы , представляет собой одну из важнейших характеристик его активности. В тех нейронах, где следовая гиперполяризация выражена значительно, частота импульсации не может быть очень высокой, так как ее верхние пределы ограничиваются фактически рефрактерным периодом. Некоторые вставочные нейроны могут выдавать вспышки разрядов с частотой порядка 1000 в секунду. В мотонейронах спинного мозга длительность следовой гиперполяризации достигает 100—150 мс; что значительно увеличивает интервал между последующими потенциалами действия.
Поэтому в обычных условиях частота ритмики мотонейронов не превышает 40—50 в секунду. Большинство двигательных актов осуществляется при еще более низкой частоте разрядов мотонейронов. Тонические мотонейроны имеют более длительную следовую гиперполяризацию и разряжаются с более редкой частотой, чем фазические мотонейроны, у которых следовая гиперполяризация короче.
2_3 Потенциал действия и нервный импульс
Библиографическая ссылка для цитирования: Сазонов В.Ф. 2_3 Потенциал действия и нервный импульс [Электронный ресурс] // Кинезиолог, 2009-2021: [сайт]. Дата обновления: 21.12.2021. URL: http://kineziolog.su/content/23-potentsial-deistviya-i-nervnyi-impuls (дата обращения: __.__.20__). __________________Понятие потенциала действия и нервного импульса. Описание графика потенциала действия и механизмов нервного импульса. "Нервный импульс - это волна изменений, движущаяся по мембране нейрона". © 2012-2021 Сазонов В.Ф. © 2012-2021 kineziolog.su
Нервный импульс
Разбираясь в нервных импульсах, мы будем иметь в виду нервное возбуждение, бегущее (=распространяющееся) по мебране нейрона. Строго говоря, движущееся по нейронам и нервам возбуждение представляет собой нервные импульсы, а не потенциалы действия, хотя в физиологической литературе два этих понятия обычно используют как синонимы.
Для того чтобы произвести нервный импульс, нейрон сначала должен создать состояние готовности (потенциал покоя), затем предготовности (локальный потенциал), и, наконец, при достижении порогового уровня локального потенциала (критического уровня деполяризации) - породить бегущий по мембране нервный импульс.
Нервный импульс - это движущаяся волна изменений в состоянии мембраны. Волна включает в себя три вида изменений: структурные (открытие и закрытие мембранных ионных каналов); химические (трансмембранные потоки ионов); электрические (изменения электрического потенциала мембраны) Электрических изменений тоже три: деполяризация, позитивная поляризация (=инверсия, =овершут) и реполяризация. Электрические изменения (проявления) в состоянии мембраны - это потенциал действия. © 2012-2021 Сазонов В.Ф. © 2012-2021 kineziolog.su
Можно сказать короче:
"Нервный импульс - это волна изменений, движущаяся по мембране нейрона". © 2012-2021 Сазонов В.Ф. © 2012-2021 kineziolog.su
Но в физиологической литературе в качестве синонима для нервного импульса принято использовать также и термин "потенциал действия". Хотя потенциал действия - это только электрический компонент нервного импульса.
Потенциал действия - это резкое скачкообразное изменение мембранного потенциала с отрицательного на положительный и обратно.
Сравним два понятия: "нервный импульс" и "потенциал действия".
Нервный импульс - это сложный структурно-электро-химический процесс, распространяющийся по мембране нейрона в виде бегущей волны изменений.
Потенциал действия - это только электрический компонент нервного импульса, характеризующий изменения электрического потенциала на локальном участке мембраны во время прохождения через него нервного импульса. Потенциал мембраны при этом изменяется от -70 до +30 мВ и обратно до -70 мВ - это и есть потенциал действия. (Кликните на изображение слева, чтобы увидеть анимацию.)
Сравните два приведённых выше рисунка (покликайте по ним) и, как говорится, почувствуйте разницу!
Где рождаются нервные импульсы?
Как ни странно, не все студенты, изучившие физиологию возбуждения, могут ответить на этот вопрос. ((
Хотя ответ не сложен. Нервные импульсы рождаются на нейронах всего в нескольких местах:
1) аксонный холмик (это переход тела нейрона в аксон),
2) рецепторное окончание дендрита,
3) первый перехват Ранвье на дендрите (триггерная зона дендрита),
4) постсинаптическая мембрана возбуждающего синапса.
Места возникновения нервных импульсов:
1. Аксонный холмик - главный породитель нервных импульсов
Аксонный холмик - это самое начало аксона, там где он начинается на теле нейрона. Именно аксонный холмик является главным породителем (генератором) нервных импульсов на нейроне. Во всех остальных местах вероятность рождения нервного импульса намного меньше. Дело в том, что у мембраны аксонного холмика повышена чувствительность к возбуждению и понижен критический уровень деполяризации (КУД) по сравнению с остальными участками мембраны. Поэтому, когда на мембране нейрона начинают суммироваться многочисленные возбуждающие постсинаптические потенциалы (ВПСП), которые возникают в самых разных местах на постсинаптических мембранах всех его синаптических контактов, то раньше всего КУД достигается именно на аксонном холмике. Там-то эта сверхпороговая для холмика деполяризация и открывает потенциал-чувствительные натриевые каналы, в которые входит поток ионов натрия, порождающий потенциал действия и нервный импульс.
Итак, аксонный холмик является интегративной зоной на мембране, он интегрирует все возникающие на нейроне локальные потенциалы (возбуждающие и тормозные) - и первый срабатывает на достижение КУД, порождая нервный импульс.
Важно также учесть следующий факт. От аксонного холмика нервный импульс разбегается по всей мембране своего нейрона: как по аксону к пресинаптическоим окончаниям, так и по дендритам к постсинаптическим "начинаниям". Все локальные потенциалы при этом снимаются с мембраны нейрона и со всех его синапсов, т.к. они "перебиваются" потенциалом действия от пробегающего по всей мембране нервного импульса.
2. Рецепторное окончание чувствительного (афферентного) нейрона
Если нейрон имеет рецепторное окончание, то на него может воздействовать адекватный раздражитель и порождать на этом окончании сначала рецепторный потенциал, затем генераторный потенциал, а потом и нервный импульс. Когда генераторный потенциал достигает КУД, то на этом окончании открываются потенциал-зависимые натриевые ионные каналы и рождается потенциал действия и нервный импульс. Нервный импульс бежит по дендриту к телу нейрона, а затем по его аксону к пресинаптическим окончаниям для передачи возбуждения на следующий нейрон. Так работают, к примеру, болевые рецепторы (ноцицепторы), являющиеся дендритными окончаниями болевых нейронов. Нервные импульсы в болевых нейронах вознимают именно на рецепторных окончаниях дендритов.
3. Первый перехват Ранвье на дендрите (триггерная зона дендрита)
Локальные возбуждающие постсинаптические потенциалы (ВПСП) на окончаниях дендрита, которые формируются в ответ на возбуждения, приходящие к дендриту через синапсы, суммируются на первом перехвате Ранвье этого дендрита, если он, конечно, миелинизирован. Там находится участок мембраны с повышенной чувствительностью к возбуждению (пониженным порогом), поэтому именно в этом участке легче всего преодолевается критический уровень деполяризации (КУД), после чего открываются потенциал-управляемые ионные каналы для натрия - и возникает потенциал действия (нервный импульс).
4. Постсинаптическая мембрана возбуждающего синапса
В редких случаях ВПСП на возбуждающем синапсе может быть настолько силён, что прямо там же достигает КУД и порождает нервный импульс. Но чаще это бывает возможно только в результате суммации нескольких ВПСП: или с нескольких соседних синапсов, сработавших одновременно (пространственная суммация), или за счёт того, что на данный синапс пришло несколько импульсов подряд (временная суммация).
Видео: Проведение нервного импульса по нервному волокну
Потенциал действия как нервный импульс
Ниже размещён материал, взятый из учебно-методического пособия автора данного сайта, на который вполне можно ссылаться в своём списке литературы:
Сазонов В.Ф. Понятие и виды торможения в физиологии центральной нервной системы: Учебно-методическое пособие. Ч. 1. Рязань: РГПУ, 2004. 80 с.
Все процессы мембранных изменений, происходящих в ходе распространяющегося возбуждения, достаточно хорошо изучены и описаны в научной и учебной литературе. Но не всегда это описание легко понять, поскольку в данном процессе задействовано слишком много компонентов (с точки зрения обычного студента, а не вундеркинда, конечно).
Для облегчения понимания мы предлагаем рассматривать единый электрохимический процесс распространяющегося динамичного возбуждения с трёх сторон, на трёх уровнях:
Электрические явления - развитие потенциала действия.
Химические явления - движение ионных потоков.
Структурные явления - поведение ионных каналов.
Три стороны процесса распространяющегося возбуждения
1. Потенциал действия (ПД)
Потенциал действия - это скачкообразное изменение постоянного мембранного потенциала с отрицательной поляризации на положительную и обратно.
Обычно мембранный потенциал в нейронах ЦНС изменяется от -70 мВ до +30 мВ, а затем вновь возвращается к исходному состоянию, т.е. к -70 мВ. Как видим, понятие потенциала действия характеризуется через электрические явления на мембране.
На электрическом уровне изменения начинаются как смена поляризованного состояния мембраны на деполяризацию, что означает уменьшение электроотрицательности на внутренней стороне мембраны. Сначала деполяризация иёет в виде локального возбуждающего потенциала. Вплоть до критического уровня деполяризации (примерно -50 мВ) это относительно простое линейное уменьшение электроотрицательности, пропорциональное силе воздействующего раздражителя. А вот потом начинается более крутая самоусиливающаяся деполяризация, она развивается не с постоянной скоростью, а с ускорением . Говоря образно, деполяризация так разгоняется, что в разгону перескакивает через нулевую отметку, не заметив этого, и даже переходит в положительную поляризацию. После достижения пика (обычно +30 мВ) начинается обратный процесс - реполяризация , т.е. восстановление отрицательной поляризации мембраны.
Кратко опишем электрические явления во время течения потенциала действия:
Восходящая ветвь графика:
Потенциал покоя - исходное обычное поляризованное электроотрицательное состояние мембраны (-70 мВ).
Нарастающий локальный потенциал - пропорциональная раздражителю деполяризация в интервале от -70 мВ до -50 мВ.
Критический уровень деполяризации (-50 мВ) запускает резкое ускорение деполяризации за счёт самораскрытия нового вида натриевых каналов (потенциал-управляемых), с этой точки начинается спайк - высокоамплитудная часть потенциала действия.
Самоусиливающаяся круто нарастающая деполяризация за счёт автоматического самораскрытия потенциал-управляемых натриевых каналов.
Переход нулевой отметки (0 мВ) - смена полярности мембраны. Но новых процессов это событие не вызывает.
«Овершут» - положительная поляризация (=инверсия, или =реверсия потенциала мембраны). Электроотрицательность переходит в электроположительность.
Пик (+30 мВ) - вершина процесса изменения полярности мембраны, вершина потенциала действия. Открытые потенциал-управляемые натриевые каналы к этому моменту самостоятельно автоматически закрываются изнутри специальными белковыми "пробками", и поступление положительно заряженных ионов натрия в клетку прекращается. Поэтому прекращается нарастание потенциала действия.
Нисходящая ветвь графика:
Реполяризация - восстановление прежней исходной электроотрицательности мембраны. Потенциал от +30 мВ опускается вниз. Это происходит благодаря утечке ионов калия из клетки через множество открытых калиевых каналов. Эти ионы выходят из клетки под действием химической силы, из-за разности их концентрации внутри и снаружи клетки. Внутри их много, а снаружи мало, вот они и перемещаются туда, где их мало.
Переход нулевой отметки (0 мВ) - обратная смена полярности мембраны на прежнюю, отрицательную. Но ничего принципиально нового здесь не происходит. Разве что с этого момента начинает действовать электрическая сила, затягивающая положительные ионы внутрь клетки и удерживающая те из них, которые уже находятся в клетке. Ионам калия с этого момента становится всё труднее выходить из клетки.
Переход критического уровня деполяризации (-50 мВ) - прекращение фазы относительной рефрактерности (невозбудимости) и возврат возбудимости нейрона.
Следовые процессы (следовая деполяризация или следовая гиперполяризация).
Восстановление потенциала покоя - возврат мембраны к своему нормальному состоянию: -70 мВ.
Итак, сначала - деполяризация, затем - реполяризация. Сначала - утрата электроотрицательности, затем - восстановление электроотрицательности.
2. Ионные потоки
Образно можно сказать, что заряженные ионы - это и есть создатели электрических потенциалов в нервных клетках. Для многих людей звучит странно утверждение, что вода не проводит электрический ток. Но на самом деле это так. Сама по себе вода является диэлектриком, а не проводником. В воде электрический ток обеспечивают не электроны, как в металлических проводах, а заряженные ионы: положительные катионы и отрицательные анионы. В живых клетках основную «электрическую работу» выполняют катионы, так как они более подвижны. Электрические токи в клетках - это потоки ионов.
Итак, важно осознать, что все электрические токи, которые идут через мембрану, являются ионными потоками . Привычного нам из физики тока в виде потока электронов в клетках, как в водных системах, просто нет. Ссылки на потоки электронов будут ошибкой.
Подведем итоги. Восходящая ветвь графика потенциала действия образуется за счет входа в клетку ионов натрия, а нисходящая - за счет выхода из клетки ионов калия.
3. Ионные каналы
Все три стороны процесса возбуждения - электрическая, химическая и структурная - необходимы для понимания его сущности. Но все-таки все начинается с работы ионных каналов. Именно состояние ионных каналов предопределяет поведение ионов, а поведение ионов в свою очередь сопровождается электрическими явлениями. Начинают процесс возбуждения натриевые каналы .
На молекулярно-структурном уровне происходит открытие мембранных натриевых каналов. Сначала этот процесс идет пропорционально силе внешнего воздействия, а затем становится просто «неудержимым» и массовым. Открытие каналов обеспечивает вход натрия в клетку и вызывает деполяризацию. Затем, примерно через 2-5 миллисекунд, происходит их автоматическое закрытие . Это закрытие каналов резко обрывает движение ионов натрия внутрь клетки, и, следовательно, обрывает нарастание электрического потенциала. Рост потенциала прекращается, и на графике мы видим спайк. Это вершина кривой на графике, дальше процесс пойдет уже в обратном направлении. Конечно, очень интересно разобраться в том, что натриевые каналы имеют двое ворот, и открываются они активационными воротами, а закрываются инактивационными, но это следует обсуждать ранее, в теме «Возбуждение». Мы на этом останавливаться не будем.
Параллельно в открытием натриевых каналов с небольшим отставанием во времени идет нарастающее открытие калиевых каналов. Они медлительные по сравнению с натриевыми. Открытие дополнительных калиевых каналов усиливает выход положительных ионов калия из клетки. Выход калия противодействует «натриевой» деполяризации и вызывает восстановление полярности (восстановление электроотрицательности). Но натриевые каналы опережают калиевые, они срабатывают примерно в 10 раз быстрее. Поэтому входящий поток положительных ионов натрия в клетку опережает компенсирующий выход ионов калия. И поэтому деполяризация развивается опережающими темпами по сравнению с противодействующей ей поляризацией, вызванной утечкой ионов калия. Вот почему, пока натриевые каналы не закроются, восстановление поляризации не начнется.
Пожар как метафора распространяющегося возбуждения
Для того чтобы перейти к пониманию смысла динамичного процесса возбуждения, т.е. к пониманию его распространения вдоль мембраны, надо представить себе, что описанные нами выше процессы захватывают сначала ближайшие, а затем все новые, все более и более отдаленные участки мембраны, пока не пробегут по всей мембране полностью. Если вы видели «живую волну», которую устраивают болельщики на стадионе за счет вставания и приседания, то вам легко будет представить себе мембранную волну возбуждения, которая образуется за счет последовательного протекания в соседних участках трансмембранных ионных токов.
Когда мы искали образный пример, аналогию или метафору, которая может наглядно передать смысл распространяющегося возбуждения, то остановились на образе пожара. Действительно, распространяющееся возбуждение похоже на лесной пожар, когда горящие деревья остаются на месте, а фронт огня распространяется и уходит все дальше и дальше во все стороны от очага возгорания.
Как же в этой метафоре будет выглядеть явление торможения?
Ответ очевиден - торможение будет выглядеть как тушение пожара, как уменьшение горения и затухание огня. Но если огонь распространяется сам по себе, то тушение требует усилий. Из потушенного участка процесс тушения сам по себе не пойдет во все стороны.
Существует три варианта борьбы с пожаром: (1) либо надо ждать, когда все сгорит и огонь истощит все горючие запасы, (2) либо надо поливать водой горящие участки, чтобы они погасли, (3) либо надо поливать заранее ближайшие нетронутые огнем участки, чтобы они не загорелись.
Можно ли «погасить» волну распространяющегося возбуждения?
Вряд ли нервная клетка способна «погасить» этот начавшийся «пожар» возбуждения. Поэтому первый способ подходит только для искусственного вмешательства в работу нейронов (например, в лечебных целях). Но вот «залить водичкой» некоторые участки и поставить блок распространению возбуждения, оказывается, вполне возможно.
© Сазонов В.Ф. Понятие и виды торможения в физиологии центральной нервной системы: Учебно-методическое пособие. Ч. 1. Рязань: РГПУ, 2004. 80 с.
АВТОВОЛНЫ В АКТИВНО-ВОЗБУДИМЫХ СРЕДАХ (АВС)
При распространении волны в активно-возбудимых средах не происходит переноса энергии. Энергия не переносится, а освобождается, когда до участка АВС доходит возбуждение. Можно провести аналогию с серией взрывов зарядов, заложенных на некотором расстоянии друг от друга (например, при тушении лесных пожаров, строительстве, мелиоративных работах), когда взрыв одного заряда вызывает взрыв рядом расположенного и так далее. Лесной пожар также является примером распространения волны в активно- возбудимой среде. Пламя распространяется по области с распределенными запасами энергии - деревья, валежник, сухой мох.
Основные свойства волн, распространяющихся в активно-возбудимых средах (АВС)
Волна возбуждения распространяется в АВС без затухания; прохождение волны возбуждения связано с рефрактерностью - невозбудимостью среды в течение некоторого промежутка времени (периода рефрактерности).
Видео: Потенциал действия (Action potential)
Потенциал покоя и потенциал действия
Мембрана всех живых клеток поляризована. Внутренняя сторона мембраны несет отрицательный заряд по сравнению с межклеточным пространством (рис. 1). Величина заряда, который несет мембрана называется мембранным потенциалом (МП). В невозбудимых тканях МП низкий, и составляет около -40 мВ. В возбудимых тканях он высокий, около -60 - -100 мВ и называется потенциалом покоя (ПП).
Потенциал покоя, как и любой мембранный потенциал формируется за счет избирательной проницаемости клеточной мембраны. Как известно, плазмолемма состоит из липидного бислоя, через который движение заряженных молекул затруднено. Белки, встроенные в мембрану, могут избирательно изменять проницаемость мембраны для различных ионов, в зависимости от приходящих стимулов. При этом, для формирования потенциала покоя ведущую роль играют ионы калия, кроме них важны ионы натрия и хлора.
Рис. 1. Концентрации и распределение ионов с внутренней и внешней стороны мембраны.
Большинство ионов распределяются неравномерно с внутренней и внешней стороны клетки (рис. 1). Внутри клетки концентрация ионов калия выше, а натрия и хлора - ниже, чем снаружи. В состоянии покоя мембрана проницаема для ионов калия и практически непроницаема для ионов натрия и хлора. Несмотря на то, что калий может свободно выходить из клетки, его концентрации остаются неизменными благодаря отрицательному заряду на внутренней стороне мембраны. Таким образом, на калий действуют две силы, находящиеся в равновесии: осмотические (градиент концентрации К + ) и электрические (заряд мембраны), благодаря чему число входящих в клетку ионов калия равно выходящим. Движение калия осуществляется через калиевые каналы утечки, открытые в состоянии покоя. Величину заряда мембраны, при которой ионы калия находятся в равновесии можно вычислить по уравнению Нернста:
где Ек — равновесный потенциал для К + ; R — газовая постоянная; Т — абсолютная температура; F — число Фарадея; n — валентность К + (+1), [К + н] — [К + вн] — наружная и внутренняя концентрации К + .
Если подставить в уравнение значения из таблицы на рис. 43, то мы получим величину равновесного потенциала, равную примерно -95 мВ. Это значение вписывается в диапазон мембранного потенциала возбудимых клеток. Отличия ПП разных клеток (даже возбудимых) могут возникать по трем причинам:
- отличия внутриклеточной и внеклеточной концентраций ионов калия в разных тканях (в таблице приведены данные по среднестатистическому нейрону);
- натрий-калиевая АТФаза может вносить свой вклад в значение заряда, так как она выводит из клетки 3 Na + в обмен на 2 К + ;
- несмотря на минимальную проницаемость мембраны для натрия и хлора, эти ионы все-таки могут попадать в клетки, хоть и от 10 до 100 раз хуже, по сравнению с калием.
Чтобы учесть проникновение других ионов в клетку существует уравнение Нернста-Гольдмана:
, где Еm — мембранный потенциал; R — газовая постоянная; Т — абсолютная температура; F — число Фарадея; РK , PNa и РCl — константы проницаемости мембраны для К + Na + и Сl, соответственно; [К + н], [K + вн], [Na + н], [Na + вн], [Сl — н] и [Сl — вн ]- концентрации K + , Na + и Сl снаружи (н) и внутри (вн) клетки.
Такое уравнение позволяет установить более точную величину ПП. Обычно, мембрана оказывается на несколько мВ менее поляризована, по сравнению с равновесным потенциалом для К + .
Потенциал действия (ПД) может возникать в возбудимых клетках. Если на нерв или мышцу нанести раздражение выше порога возбуждения, то ПП нерва или мышцы быстро уменьшится и на короткий промежуток времени (миллисекунда) произойдет кратковременная перезарядка мембраны: ее внутренняя сторона станет заряженной положительно относительно наружной, после чего восстановится ПП. Это кратковременное изменение ПП, происходящее при возбуждении клетки называется потенциалом действия.
Возникновение ПД возможно благодаря тому, что в отличие от ионов калия, ионы натрия далеки от равновесия. Если подставить в уравнение Нернста натрий вместо калия, то мы получим равновесный потенциал, равный примерно +60 мВ. Во время ПД, происходит кратковременное увеличение проницаемости для Na + . При этом, натрий начнет проникать в клетку под действием двух сил: по градиенту концентрации и по заряду мембраны, стремясь подстроить заряд мембраны под свой равновесный потенциал. Движение натрия осуществляется по потенциал-зависимым натриевым каналам, которые открываются в ответ на смещение мембранного потенциала, после чего сами инактивируются.
Рис. 2. Потенциал действия нервного волокна (А) и изменение проводимости мембраны для ионов натрия и калия (Б).
На записи ПД выглядит как кратковременный пик (рис. 44), имеющий несколько фаз.
- Деполяризация (фаза нарастания) (рис. 44) - увеличение проницаемости для натрия из-за открытия натриевых каналов. Натрий стремится к своему равновесному потенциалу, но не достигает его, так как канал успевает инактивироваться.
- Реполяризация - возвращение заряда к величине потенциала покоя. Помимо калиевых каналов утечки здесь подключаются потенциал-зависимые калиевые каналы (активируются от деполяризации). В это время калий выходит из клетки, возвращаясь к своему равновесному потенциалу.
- Гиперполяризация (не всегда) - возникает в случаях, если равновесный потенциал по калию превышает по модулю ПП. Возвращение к ПП происходит после возвращения к равновесному потенциалу по К + .
Во время ПД происходит изменение полярности заряда мембраны. Фаза ПД, при которой заряд мембраны положителен, называется овершутом (рис. 2).
Благодаря Н-воротам инактивация канала происходит раньше, чем потенциал на мембране достигнет равновесной величины по натрию. После прекращения поступления натрия в клетку, происходит реполяризация за счет выходящих из клетки ионов калия. При этом к каналам утечки в этом случае подключаются еще и потениал-активируемые калиевые каналы. Во время реполяризации, в быстром натриевом канале быстро закрываются М-ворота. Н-ворота открываются гораздо медленнее и остаются закрытыми еще некоторое время после возвращения заряда к потенциалу покоя. Этот период принято называть периодом рефрактерности.
Рис. 3. Работа потенциал-управляемого натриевого канала.
Концентрации ионов внутри клетки восстанавливает натрий-калиевая АТФаза, которая с затратой энергии в виде АТФ откачивает из клетки 3 иона натрия и закачивает 2 иона калия.
По немиелинизированному волокну или по мембране мышцы потенциал действия распространяется непрерывно. Возникший потенциал действия за счет электрического поля способен деполяризовать мембрану соседнего участка до порогового значения, в результате чего на соседнем участке возникает деполяризация. Главную роль в возникновении потенциала на новом участке мембраны предыдущий участок. При этом на каждом участки сразу после ПД наступает период рефрактерности, за счет которое ПД распространяется однонаправленно. При прочих равных условиях распространение потенциала действия по немиелинизированному аксону происходит тем быстрее, чем больше диаметр волокна. У млекопитающих скорость составляет 1-4 м/с. Поскольку у беспозвоночных животных отсутствует миелин, в гигантских аксонах кальмара скорость ПД может достигать 100 м/c.
По миелинизированному волокну потенциал действия распространяется скачкообразно (сальтаторное проведение). Для миелинизированных волокон характерна концентрация потенциалзависимых ионных каналов только в областях перехватов Ранвье; здесь их плотность в 100 раз больше, чем в мембранах немиелинизированных волокон. В области миелиновых муфт потенциалзависимых каналов почти нет. Потенциал действия, возникший в одном перехвате Ранвье, за счет электрического поля деполяризует мембрану соседних перехватов до порогового значения, что приводит к возникновению в них новых потенциалов действия, то есть возбуждение переходит скачкообразно, от одного перехвата к другому. В случае повреждения одного перехвата Ранвье потенциал действия возбуждает 2-й, 3-й, 4-й и даже 5-й, поскольку электроизоляция, создаваемая миелиновыми муфтами, уменьшает рассеивание электрического поля. Сальтаторное проведение увеличивает скорость проведения ПД 15-20 раз до 120 м/с.
Работа нейронов
Нервная система состоит из нейронов и глиальных клеток. Однако, главную роль в проведении и передаче нервных импульсов играют нейроны. Они получают информацию от множества клеток по дендритам, анализируют ее и передают или не передают на следующий нейрон.
Передача нервного импульса с одной клетки на другую осуществляется с помощью синапсов. Различают два основных типа синапсов: электрические и химические (рис. 4). Задача любого синапса - передать информацию с пресинаптической мембраны (мембрана аксона) на постсинаптическую (мембрана дендрита, другого аксона, мышцы или другого органа-мишени). Большинство синапсов нервной системы образуется между окончанием аксонов и дендритами, которые в области синапса образуют дендритные шипики.
Преимущество электрического синапса состоит в том, что сигнал с одной клетки на другую переходит без задержки. Кроме того, такие синапсы не утомляются. Для этого пре- и постсинаптические мембраны соединены поперечными мостиками, через которые ионы из одной клетки могут перемещаться в другую. Однако, существенным минусом такой системы является отсутствие однонаправленной передачи ПД. То есть, он может передаваться как с пресинаптической мембраны на постсинаптическую, так и наоборот. Поэтому, такая конструкция встречается достаточно редко и в основном - в нервной системе беспозвоночных.
Рис. 4. Схема строения химического и электрического синапсов.
Химический синапс весьма распространен в природе. О устроен сложнее, так как необходима система преобразования электрического импульса в химический сигнал, затем, вновь в электрический импульс. Все это приводит к возникновению синаптической задержки, которая может составить 0,2-0,4 мс. Кроме того, может произойти истощение запасов химического вещества, что приведет к утомлению синапса. Однако, такой синапс обеспечивает однонаправленность передачи ПД, что является его главным преимуществом.
Рис. 5. Схема работы (а) и электронная микрофотография (б) химического синапса.
В состоянии покоя окончание аксона, или пресинаптическое окончание, содержит мембранные пузырьки (везикулы) с нейромедиатором. Поверхность везикул заряжена отрицательно, чтобы предотвратить связывание с мембраной, и покрыта специальными белками, и принимающими участие в высвобождении везикул. В каждом пузырьке находится одинаковое количество химического вещества, которое называется квантом нейромедиатора. Нейромедиаторы весьма разнообразны по химическому строению, однако, большинство из них производятся прямо в окончании. Поэтому, в нем могут находиться системы, для синтеза химического посредника, а также аппарат Гольджи и митохондрии.
Постсинаптическая мембрана содержит рецепторы к нейромедиатору. Рецепторы могут быть в виде как ионных каналов, открывающихся при контакте со своим лигандом (ионотропные), так и мембранными белками, запускающими внутриклеточный каскад реакций (метаботропные). Один нейромедиатор может иметь несколько как ионотропных, так и метаботропных рецепторов. При этом, часть из них может быть возбуждающими, а часть - тормозными. Таким образом, реакцию клетки на нейромедиатор будет определять тип рецептора на ее мембране, и разные клетки могут совершенно по-разному реагировать на одно и то же химическое вещество.
Между пре- и постсинаптической мембраной располагается синаптическая щель, шириной 10-15 нм.
При приходе ПД на пресинаптическое окончание, на нем открываются потенциал-активируемые кальциевые каналы и ионы кальция входят в клетку. Кальций связывается с белками на поверхности везикул, что приводит к их транспортировке к пресинаптической мембране с последующим слиянием мембран. После такого взаимодействия нейромедиатор оказывается в синаптической щели (рис. 5) и может связаться со своим рецептором.
Ионотропные рецепторы - это лиганд-активируемые ионные каналы. Это значит, что канал открывается только в присутствии определенного химического вещества. Для разных нейромедиаторов это могут быть натриевые, кальциевые или хлорные каналы. Ток натрия и кальция вызывает деполяризацию мембраны, поэтому такие рецепторы называют возбуждающими. Хлорный ток приводит к гиперполяризации, что затрудняет генерацию ПД. Следовательно, такие рецепторы называют тормозными.
Метаботропные рецепторы к нейромедиаторам относят к классу рецепторов, ассоцированных с G-белками (GPCR). Эти белки запускают разнообразные внутриклеточные каскады реакций, приводящих в конечном итоге либо к дальнейшей передачи возбуждения, либо к торможению.
После передачи сигнала необходимо быстро удалить нейромедиатор из синаптической щели. Для этого в щели присутствуют либо ферменты расщепляющие, нейромедиатор, либо на пресинаптическом окончании или соседних глиальных клетках могут располагаться транспортеры, закачивающие медиатор в клетки. В последнем случае он может использоваться повторно.
Каждый нейрон получает импульсы от 100 до 100 000 синапсов. Одиночная деполяризация на одном дендрите не приведет к дальнейшей передаче сигнала. На нейрон могут приходит одновременно множество как возбуждающих, так и тормозных стимулов. Все они суммируются на соме нейрона. Такая суммация называется пространственной. Далее, может возникнуть или не возникнуть (в зависимости от пришедших сигналов) ПД в области аксонного холмика. Аксонный холмик - это область аксона, примыкающая к соме и обладающая минимальным порогом ПД. Далее импульс распространяется по аксону, конец которого может сильно ветвиться и образовывать синапсы со множеством клеток. Помимо пространственной, существует временная суммация. Она происходит в случае, поступления часто повторяющихся импульсов от одного дендрита.
Помимо классических синапсов между аксонами и дендритами или их шипиками, существуют также синапсы, модулирующие передачу в других синапсах (рис. 6). К ним относят аксо-аксональные синапсы. Такие синапсы способны усиливать или тормозить синаптическую передачу. То есть, если на окончание аксона, образующего аксо-шипиковый синапс, пришел ПД, а в это время по аксо-аксональному синапсу на него пришел тормозный сигнал, высвобождения нейромедиатора в аксо-шипиковом синапсе не произойдет. Аксо-дендритные синапсы могут изменять проведение мембраной ПД на пути от шипика к соме клетки. Также существуют аксо-соматические синапсы, которые могут влиять на суммацию сигнала в области сомы нейрона.
Таким образом, существует огромное многообразие различных синапсов, отличающихся по составу нейромедиаторов, рецепторов и их местоположению. Все это обеспечивает разнообразие реакций и пластичность нервной системы.
Физиология человека и животных
2. Ионные каналы, классификация, строение и функции. Потенциал действия и его фазы. Вклад потенциалзависимых ионных каналов в формирование потенциала действия
Специфическая реакция нейрона (возбуждение) на действие раздражителя (электрического импульса) - это образование потенциала действия, то есть кратковременного изменения мембранного потенциала клетки при действии на него электрического импульса. Основная роль в возбуждении принадлежит потенциалзависимым ионным каналам. Эти каналы представляют собой гликопротеины, входящие в состав клеточных мембран и способные при действии нервного (электрического) импульса избирательно менять проницаемость мембраны для определенных ионов. Кроме потенциал-зависимых каналов, в мембране нейрона могут находиться также лигандзависимые каналы. Это такие каналы, в которых проницаемость для определенных ионов меняется при действии на мембрану специфических для них веществ (лигандов). Если канал изменяет свою проницаемость только при действии определенных веществ, он является селективным, в то время как в неселективных каналах проницаемость может меняться при действии целого ряда веществ.
В механизме развития потенциала действия (ПД) важнейшую роль играет изменение проницаемости мембраны для ионов натрия. В покое потенциал-зависимый натриевый канал не пропускает ионы натрия (рисунок 1). Если на возбудимую мембрану действует определенный электрический сигнал (раздражитель), сила которого больше критической величины (порога), происходит активация так называемых потенциал-зависимых каналов, по которым ионы натрия могут проникать в клетку. Уменьшение заряда на мембране сопровождается деполяризацией мембраны. Потенциал-зависимые каналы образованы встроенными в мембрану белковыми молекулами, внутри которых имеется пора и два вида перекрывающих ее ворот. Различают активационные ворота (m-ворота), расположенные с наружной стороны мембраны, и инактивационные ворота (h-ворота) - с внутренней стороны. Ворота - это участки белковой молекулы, изменяющие свое положение в зависимости от уровня заряда на мембране. Когда заряд на мембране больше критической величины (порога), открываются активационные ворота, и поток ионов натрия лавинообразно поступает внутрь клетки, неся с собой положительный заряд, вследствие чего на внутренней стороне мембраны образуется положительный заряд (происходит инверсия знака заряда) до +50 мВ. Этот поток происходит в течение 1-2 мс, - достигается пик деполяризации - +55 мВ (натрий-равновесный потенциал, когда открыты все натриевые каналы мембраны) - так называемый критический уровень.
Рисунок 1 - Потенциал действия
Таким образом, абсолютная величина потенциала действия - около 125 мВ. После этого закрываются инактивационные ворота и поток ионов натрия прекращается, но одновременно открываются потенциал-зависимые калиевые каналы, по которым ионы калия начинают выделяться из клетки наружу, унося с собой избыток положительных зарядов. В результате заряд на мембране восстанавливается до первоначальной величины - происходит реполяризация мембраны.
Гиперполяризация мембраны - изменение мембранного потенциала в более электроотрицательном направлении с увеличением мембранного потенциала до -125 мВ, может происходить при действии на мембрану тормозных нейромедиаторов и вызываемым ими открытием ион-селективных каналов для ионов хлора, в результате чего ионы хлора поступают внутрь клетки и увеличивают отрицательный заряд на внутренней стороне мембраны.
Длительность потенциала действия нейрона составляет всего около 1 мс (1/1000 с). У некоторых возбудимых клеток последние стадии восстановления заряда на мембране могут быть замедлены, и заряд на мембране может стать меньше исходного - так называемая следовая отрицательная деполяризация, после чего может быть небольшая следовая гиперполяризация, и лишь затем происходит восстановление исходного заряда на мембране. Следовая деполяризация связана с потоком ионов натрия, а следовая гиперполяризация - с потоком ионов К + .
Следовательно, ПД состоит из: локального ответа, пика и отрицательного и положительного следовых потенциалов. При этом фаза деполяризации ПД обусловлена потоком ионов натрия внутрь клетки, фаза реполяризации - потоком ионов калия наружу.
Если электрический сигнал имеет небольшую величину (меньше так называемой критической величины, или порога), возникает небольшой поток ионов натрия внутрь клетки, изменяется заряд на мембране, развивается локальный ответ (ЛО), однако поток ионов натрия внутрь клетки быстро прекращается и заряд на мембране восстанавливается до первоначальной величины за счет действия Na-K-насоса. ЛО длится 5-15 мс, пик - 1-2 в нервных, 3-5 в мышечных и 5-10 мс в секреторных клетках, отрицательный следовой потенциал - 20-80, а положительный - более 100 мс.
Таким образом, при подпороговом значении силы раздражения возникает лишь локальный ответ, а ПД возникает, причем всегда с одинаковой амплитудой, лишь в том случае, если раздражение доходит до порогового значения или превышает его - закон Боудича “все или ничего”.
Электрический заряд на мембране имеют не только нейроны, но и многие другие клетки организма, но только в нейронах во время возбуждения образуется потенциал действия, который может распространяться по нервному волокну. Локальный ответ, в отличие от ПД, распространяться по мембране нейрона не может (таблица 1).
Отличия ЛО от ПД
Локальный ответ | Потенциал действия |
возникает в ответ на подпороговые раздражители | возникает в ответ на силу, равную или более порога |
является местной формой возбуждения | является распространяющейся формой возбуждения |
локальные ответы способны к суммации и при определенных условиях могут достигать порога | потенциал действия имеет стандартную амплитуду, зависящую от свойств мембраны, и не суммируется, так как во время пика мембрана теряет возбудимость |
Таким образом, все виды электрических явлений в возбудимых тканях можно представить в следующей схеме.
Потенциал действия
Потенциалом действия называют быстрое колебание мембранного потенциала, возникающее при возбуждении нервных, мышечных и некоторых других клеток. В его основе лежат изменения ионной проницаемости мембраны. Амплитуда и характер временных изменений потенциала действия мало зависят от силы вызывающего его раздражителя, важно лишь, чтобы эта сила была не меньше некоторой критической величины, которая называется порогом раздражения. Возникнув в месте раздражения, потенциал действия распространяется вдоль нервного или мышечного волокна, не изменяя своей амплитуды. Наличие порога и независимость амплитуды потенциала действия от силы вызвавшего его стимула получили название закона «все или ничего» .
В естественных условиях потенциалы действия генерируются в нервных волокнах при раздражении рецепторов или возбуждении нервных клеток. Распространение потенциалов действия по нервным волокнам обеспечивает передачу информации в нервной системе. Достигнув нервных окончаний, потенциалы действия вызывают секрецию химических веществ (медиаторов), обеспечивающих передачу сигнала на мышечные или нервные клетки. В мышечных клетках потенциалы действия инициируют цепь процессов, вызывающих сократительный акт. Ионы, проникающие в цитоплазму во время генерации потенциалов действия, оказывают регулирующее влияние на метаболизм клетки и, в частности, на процессы синтеза белков, составляющих ионные каналы и ионные насосы.
Для регистрации потенциалов действия используют вне- или внутриклеточные электроды. При внеклеточном отведении электроды подводят к наружной поверхности волокна (клетки). Это позволяет обнаружить, что поверхность возбужденного участка на очень короткое время (в нервном волокне на тысячную долю секунды) становится заряженной отрицательно по отношению к соседнему покоящемуся участку.
Использование внутриклеточных микроэлектродов позволяет количественно охарактеризовать изменения мембранного потенциала во время восходящей и нисходящей фаз потенциала действия. Установлено, что во время восходящей фазы ( фаза деполяризации ) происходит не просто исчезновение потенциала покоя (как это первоначально предполагали), а возникает разность потенциалов обратного знака: внутреннее содержимое клетки становится заряженным положительно по отношению к наружной среде, иными словами, происходит реверсия мембранного потенциала . Во время нисходящей фазы ( фазы реполяризации ) мембранный потенциал возвращается к своему исходному значению. На рис. 3 и 4 приведены примеры записей потенциалов действия в скелетном мышечном волокне лягушки и гигантском аксоне кальмара. Видно, что в момент достижения вершины (пика) мембранный потенциал составляет + 30 / + 40 мВ и пиковое колебание сопровождается длительными следовыми изменениями мембранного потенциала, после чего мембранный потенциал устанавливается на исходном уровне. Длительность пика потенциала действия у различных нервных и скелетных мышечных волокон варьирует от 0,5 до 3 мс, причем фаза реполяризации продолжительнее фазы деполяризации.
Длительность потенциала действия , особенно фазы реполяризации, находится в тесной зависимости от температуры: при охлаждении на 10 °С продолжительность пика увеличивается примерно в 3 раза.
Изменения мембранного потенциала, следующие за пиком потенциала действия, называют следовыми потенциалами.
Различают два вида следовых потенциалов —следовую деполяризацию и следовую гиперполяризацию. Амплитуда следовых потенциалов обычно не превышает нескольких милливольт (5—10% от высоты пика), а длительность их у различных волокон составляет от нескольких миллисекунд до десятков и сотен секунд.
Зависимость пика потенциала действия и следовой деполяризации может быть рассмотрена на примере электрического ответа скелетного мышечного волокна. Из записи, приведенной на рис. 3, видно, что нисходящая фаза потенциала действия (фаза реполяризации) делится на две неравные части. Вначале падение потенциала происходит быстро, а затем сильно замедляется. Этот медленный компонент нисходящей фазы потенциала действия называют следовой деполяризацией.
Пример следовой гиперполяризации мембраны, сопровождающей пик потенциала действия в одиночном (изолированном) гигантском нервном волокне кальмара, показан на рис. 4. В этом случае нисходящая фаза потенциала действия непосредственно переходит в фазу следовой гиперполяризации, амплитуда которой в данном случае достигает 15 мВ. Следовая гиперполяризация характерна для многих безмякотных нервных волокон холоднокровных и теплокровных животных. В миелинизированных нервных волокнах следовые потенциалы имеют более сложный характер. Следовая деполяризация может переходить в следовую гиперполяризацию, затем иногда возникает новая деполяризация, лишь после этого происходит полное восстановление потенциала покоя. Следовые потенциалы в значительно большей мере, чем пики потенциалов действия, чувствительны к изменениям исходного потенциала покоя, ионного состава среды, кислородного снабжения волокна и т. д.
Характерная особенность следовых потенциалов — их способность изменяться в процессе ритмической импульсации (рис. 5).
Читайте также: