Растяжимость дыхательного аппарата. Релаксационное давление дыхательной системы
Добавил пользователь Skiper Обновлено: 14.12.2024
Основными характеристиками респираторной системы являются податливость (комплайнс) и сопротивление (резистанс). Величина податливости и сопротивления определяются давлением, потоком и объемом воздуха в легких. Рассмотрим эти понятия на примере объемного механического вдоха (рис. 2.1).
Для подачи заданного объема кислородно-воздушной смеси необходимо обеспечить определенный дыхательный поток. Его максимальная величина на вдохе называется пиковым инспираторным потоком, максимальная величина на выдохе - пиковым экспираторным потоком. При поступлении воздушного потока в легкие в них подается дыхательный объем и создается некоторое давление (Paw). В начале вдоха это давление максимальное, пиковое (Ppeak). Затем оно снижается. При наличии в конце вдоха паузы, во время которой нет движения воздуха в дыхательных путях, можно определить так называемое давление плато вдоха (Pplat). Отсутствие движения воздуха в дыхательной системе во время паузы вдоха приводит к уравниванию давления в трахее, бронхах, альвеолах. Измеряя величину Pplat датчиком давления, располагающимся у наружного конца интубационной трубки, можно оценить давление в альвеолах в конце вдоха (Palv). С точки зрения газообмена альвеолярное давление является очень важным параметром, поскольку отражает ту движущую силу, которая растягивает альвеолы и обеспечивает градиент давления между ними и легочными капиллярами. Кроме того, от величины Palv зависит венозный возврат к сердцу и вероятность повреждения альвеол. При выдохе происходит снижение Paw до того уровня положительного давления в конце выдоха (positive end expiratory pressure, РЕЕР), которое установлено врачом. Последняя величина называется внешним, или аппаратным РЕЕР. Кроме давления, измеренного возле проксимального конца интубационной трубки, клиническое значение имеет величина давления в нижней трети пищевода (Pes), отражающая колебания давления в плевральной полости.
Если у пациента имеется ограничение выдоха, что бывает, например, при хронической обструктивной болезни легких (ХОБЛ), то воздух может задерживаться в легких. Вследствие этого поступающие новые порции дыхательной смеси приводят к развитию перерастяжения (гиперинфляции) легких. Одним из критериев оценки гиперинфляции является величина непреднамеренного (внутреннего) РЕЕР. Необходимо учесть, что в этом случае истинный РЕЕР может существенно отличаться от внешнего. Подробнее эта проблема будет рассмотрена в разделе, посвященном проведению ИВЛ у больных с ХОБЛ.
Сопротивление дыхательных путей (R) рассчитывают как частное от деления разницы между Ppeak и РЕЕР на величину пикового потока.
R = (Ppeak - РЕЕР) : V’
где V’ - пиковый поток.
Податливость (С) определяется разницей давлений в легких во время вдоха и выдоха при введении в них определенного объема воздуха. Если в расчет принимается разница Pplat и РЕЕР, то податливость называется статической (Сstat).
Строго говоря, для того, чтобы измеряемое респиратором давление соответствовало Pplat, нужно создать достаточно длительную паузу вдоха (обычно не менее 0,5 с). За столь длительный промежуток времени можно достичь уравнивания давления в разных альвеолах. Если столь длительная пауза не выдерживается, то в расчетах используют величину Paw , примерно соответствующую Pplat. В связи с этим показатель податливости называется динамическим (Сdyn).
Величина, обратная податливости, называется эластичностью легких (E).
Величина динамической податливости больше статической и зависит не только от эластических свойств легких, но и от сопротивления дыхательных путей. Для клинической практики важно понимать, что чем меньше податливость и больше сопротивление, тем труднее ввести дыхательный объем в легкие больного. Следовательно, тем большее давление в дыхательной системе для этого нужно создать.
Однако энергия механического вдоха расходуется не только на растяжение легких, но и на преодоление эластичности окружающих структур: грудной клетки и живота, а также повязок и бандажей. На поступление воздуха в дыхательную систему влияют свойства:
1. эндотрахеальной (трахеостомической) трубки,
2. собственно легких,
3. грудной клетки.
Грудная клетка представляет собой мышечно-реберный каркас. Наиболее изменчивы характеристики этого каркаса в его нижней части, которая занята диафрагмой. Смещение диафрагмы в краниальном направлении вследствие повышения внутрибрюшного давления является одной из наиболее частых причин изменения механических свойств грудной клетки.
Поступление воздуха в легкие должно преодолеть силы эластичности. Несколько упрощая реальную ситуацию, можно выделить эластичность самих легких и эластичность грудной клетки. Соответственно раздельно рассматривают податливость легких и грудной клетки. Податливостью эндотрахеальной трубки в виду жесткости ее стенок обычно пренебрегают. Кроме того, воздух, поступающий в легкие, имеет определенную вязкость. Как всякая вязкая среда, воздушный поток преодолевает сопротивление тех структур, с которыми он контактирует. Поэтому различают сопротивление эндотрахеальной трубки и сопротивление дыхательных путей.
Раздельный учет 4 факторов - сопротивления эндотрахеальной трубки (Ret), сопротивления дыхательных путей (Raw), податливости легких (C L ) и податливости грудной клетки (CCW) - лежит в основе четырехкомпонентной модели легких. Использование этой модели полезно в клинической практике, поскольку позволяет рационально подбирать режимы ИВЛ. Влияние всех четырех компонентов приводит к формированию общего показателя - давления в дыхательной системе (Paw):
Величину Paw можно измерить с помощью имеющегося во всех респираторах датчика давления, располагающегося в контуре аппарата ИВЛ. Для оценки отдельных компонентов респираторной системы используют дополнительные датчики давления, вводимые в трахею и пищевод пациента. Раздельную оценку сопротивлений эндотрахеальной трубки и дыхательных путей проводят при сравнении показаний датчиков, располагающихся в контуре аппарата и непосредственно в трахее. Анализ изменений трахеального давления позволяет исключить влияние интубационной трубки и оценивать сопротивление только дыхательной системы (рис. 2.2).
Для определения C L и CCW используют информацию, получаемую также от двух датчиков: обычного, располагающегося у наружного конца интубационной трубки, и пищеводного, вводимого в нижнюю треть пищевода. Показания последнего соответствуют изменениям плеврального давления.
Как известно, в состоянии выдоха давление в альвеолах равняется атмосферному. В нормальной физиологии величину атмосферного давления принято рассматривать как референтную точку, т.е. принимать ее в качестве нуля. В связи с этим во время выдоха в плевральной полости давление, которое ниже атмосферного, считается отрицательным (обычно -5 см вод. ст.). Такая величина давления нужна для уравновешивания эластичности легких и грудной клетки
При вдохе динамика плеврального давления отражает разные физиологические процессы в зависимости от того, является ли вдох спонтанным или механическим. И при спонтанном вдохе, и при механическом происходит растяжение легких. В обоих случаях сила, которая движет воздух в легкие, создается за счет разницы давлений между альвеолами и окружающей средой.
При механическом вдохе давление окружающей среды, создаваемое респиратором, больше давления в альвеолах. Увеличение давления в альвеолах приводит к росту плеврального давления, которое становится положительным. Иными словами, плевральное давление отражает ту силу, с которой растягиваемые респиратором легкие расправляют грудную клетку. Динамика Paw, измеряемого возле наружного конца эндотрахеальной трубки при механическом вдохе, определяется силой, с которой респиратор растягивает суммарно легкие и грудную клетку.
Согласно законам физиологии, эластичность респираторной системы (Ers) равна сумме эластичностей легких (E L ) и грудной клетки (ECW):
Общая податливость респираторной системы (Crs) является результатом совместного влияния C L и CCW. Поскольку податливость - это величина, обратная эластичности, получаем следующую формулу:
Путем дальнейших арифметических действий можно рассчитать податливость грудной клетки:
Иная ситуация возникает при спонтанном вдохе. Градиент давления, движущий воздух в легкие, создается за счет работы мышц вдоха и увеличения грудной клетки в объеме. Отрицательное плевральное давление становится меньше, т.е. еще отрицательнее, что приводит к «засасыванию» воздуха в легкие. Иными словами, изменения плеврального давления при спонтанном вдохе отражают ту силу, с которой грудная клетка растягивает легкие. Из-за активного сокращения дыхательной мускулатуры во время спонтанного вдоха оценить отдельно податливость грудной клетки не представляется возможным. В связи с этим, во время самостоятельного вдоха величина давления, как во всей дыхательной системе, так и в плевральной полости зависит только от податливости легких (C L ).
Зачем нужны описанные физиологические характеристики практикующему реаниматологу? Они необходимы для объяснения современных подходов к проведению респираторной поддержки, которые основаны на четырех основных положениях (Artigas A. et al., 1998):
1. облегчение непереносимой больным работы дыхательной мускулатуры,
2. предупреждение повреждения легких во время ИВЛ,
3. обеспечение оксигенации,
4. поддержание вентиляции (выведения углекислоты).
Подчеркнем, что приведенная последовательность не является случайной. Приоритетными задачами являются первые две. Крайне желательно, чтобы решение остальных задач не вступало в противоречие с ними. Для облегчения непереносимой больным работы дыхательной мускулатуры необходимо создать максимальное соответствие его дыхательного паттерна и работы респиратора. С этой целью нужно подбирать режимы вентиляции, оптимизировать качество триггирования (отклика) респиратора на дыхательные попытки больного, а также использовать оценку состояния механики дыхания конкретного больного.
Для предупреждения повреждения легких во время проведения ИВЛ необходимо предотвращать избыточное повышение давления в альвеолах (баротравму легких), поступление избыточного объема воздуха в легких (волюмотравму) и повторение циклов закрытия-раскрытия альвеол (ателектотравму). Указанные принципы составляют основу лечебной доктрины, называемой «открытыми отдыхающими легкими» («open lung rest»). В многочисленных экспериментальных и клинических работах показано, что невнимание к этим факторам приводит к прогрессированию дисфункции легких и развитию не только дыхательной, но и полиорганной недостаточности из-за выброса из альвеолоцитов повреждающих медиаторов воспаления. Цепь описываемых событий имеет название биотравмы (Plцtz F. et al., 2004).
Для предупреждения баротравмы альвеолярное давление должно быть ограничено величиной 30 см вод. ст. Если у пациента нет проблем с податливостью грудной клетки, то величина давления плато в дыхательных путях соответствует альвеолярному давлению. Поэтому при проведении ИВЛ стараются не превышать давление плато более чем 30 см вод. ст. Для ограничения давления плато при снижении податливости легких приходится уменьшать вводимый дыхательный объем. Доказано, что даже для здоровых легких опасным является длительное применение дыхательных объемов 10-12 мл/кг идеальной массы тела больного и более.
Следует также учесть, что повреждающее действие на легкие оказывают повышенные концентрации кислорода (оксигенотравма). Наиболее вероятный механизм - активация перекисного окисления липидов. Кроме того, избыточное содержание кислорода приводит к низкому содержанию в альвеолах биологически инертного газа азота. Из-за отсутствия азота всасывание кислорода в кровь делает альвеолу безвоздушной, и она спадается. Возникающие при этом микроателектазы называются абсорбционными.
Указанные рекомендации не относятся к пациентам с заболеваниями и поражениями мозга и сердца, которые нуждаются не просто в нормальном, а в повышенном уровне оксигенации. Обеспечение гипероксии неизбежно приводит к использованию таких подходов к ИВЛ, которые повреждают легкие. В связи с этим приходится в каждом конкретном случае выбирать между тактикой предупреждения повреждения легких и обеспечением необходимых параметров газообмена. Обычно из-за опасений гипоксии и гиперкапнии в клинической практике величину дыхательного объема снижают чаще всего только до 7-8 мл/кг.
1. спонтанные вдохи увеличивают венозный возврат и насосную функцию здорового сердца (при левожелудочковой недостаточности наблюдается обратный эффект);
2. дополнительный объем дыхания улучшает оксигенацию артериальной крови и выведение углекислоты;
3. отсутствие борьбы с респиратором снимает избыточную работу мышц вдоха и выдоха, экономит кислород, поступающий в ограниченном количестве из-за поражения легких, и обеспечивает комфорт для больного;
4. во время спонтанного вдоха задние мышечные сегменты диафрагмы сокращаются сильнее, чем передние сухожильные, что улучшает вентиляцию дорсальных отделов легких. Поскольку при механическом вдохе сокращения диафрагмы отсутствуют, то давление органов брюшной полости приводит к преимущественному поступлению воздуха в немногочисленные вентральные альвеолы и спаданию дорсальных.
Отмеченные положительные эффекты сохранения спонтанного дыхания касаются только неглубоких вдохов. При значительной глубине спонтанного вдоха проявляются его негативные эффекты. Важнейшие из них следующие:
1. значительная нагрузка на дыхательные мышцы с нерациональным расходом кислорода;
2. пережатие полых вен перераздутыми легкими с нарушением венозного возврата;
3. значительное растяжение альвеол снаружи, со стороны плевральной полости, что в сочетании с раздуванием их респиратором изнутри приводит к повышению так называемого транспульмонального давления и повреждению легких.
Резюмируя сказанное, можно констатировать принципиальное изменение взглядов на респираторную поддержку в настоящее время. Отметим основные положения:
1. практически полный отказ от нетриггированной вентиляции с максимальным вниманием к сохранению спонтанного дыхания пациента;
2. особое внимание к предупреждению повреждения легких из-за нерационального выбора параметров ИВЛ;
3. отказ от стремления к нормализации газообмена и других показателей гомеостаза в пользу так называемых стресс-норм.
Кроме того, наметился пересмотр отношения к ИВЛ как к методике протезирования легких, которую нужно использовать по возможности реже и отказываться от нее, чем раньше, тем лучше. Отношение изменилось в пользу оценки ИВЛ как лечебного метода при заболеваниях и повреждениях легких, при кардиологических и кардиохирургических проблемах. В связи с этим показания к искусственной вентиляции легких и длительность ее проведения расширены во многих клинических ситуациях.
Отметим, что для проведения рациональной респираторной поддержки необходимо понимание не только физиологических особенностей больного, но и деталей реализации режимов ИВЛ в аппаратах различных классов и моделей. Современные респираторы предлагают врачу не альтернативные варианты проведения ИВЛ, а непрерывную гамму режимов. Цель использования разных режимов и алгоритмов ИВЛ - индивидуальный подход к конкретной клинической ситуации. В связи с этим, автор глубоко убежден, что способность реаниматолога разобраться в физиологии и патофизиологии дыхания, а также в деталях технологии респираторной поддержки является одним из маркеров его профессионализма.
Методички по нормальной физиологии / Физиология дыхания
Плевральное давление часто называют отрицательным лишь потому, что оно ниже атмосферного. Плевральное давление можно считать отрицательным, если атмосферное давление принять за 0. На самом деле это давление положительное и зависит от атмосферного давления.
Если атмосферное давление сегодня равно 747 мм рт. ст., то плевральное давление к концу спокойного выдоха будет равно 747 - 3 = 744 мм рт. ст. Таким образом, транспульмональное давление равно 747 - 744 = 3 мм рт. ст .
Рассмотрим, каким образом изменяется альвеолярное и плевральное давление во время дыхания. Схема и рисунки 3А и Б иллюстрируют изменения давления во время вдоха и выдоха.
Перед вдохом давление в альвеолах равно атмосферному, движения воздуха нет. Стрелка - это эластическая тяга легкого, которая создает в плевральной полости давление ниже атмосферного. Транспульмональное давление поддерживает легкие в расправленном состоянии.
Во время вдоха объем грудной клетки увеличивается, легочная ткань растягивается. Объем легких увеличивается, давление в альвеолах становится ниже атмосферного, и воздух поступает в легкие. Увеличение размеров грудной клетки приводит к еще большему уменьшению плеврального давления, потому что плевральная полость растягивается в двух направлениях - две стрелки - увеличение размеров грудной клетки и более сильная тяга эластики легких во время их растяжения. Таким образом, транспульмональная разница давлений не только сохраняется, ни и немного увеличивается, облегчает растяжение легких.
Во время пассивного выдоха (расслабление межреберных мышц и диафрагмы) увеличение плеврального давления и ретракция эластики легких обеспечивают движение воздуха из альвеол в атмосферу.
На этой схеме приведены давления в альвеолах и плевральной полости во время активного выдоха. При сокращении внутренних межреберных мышц уменьшаются размеры грудной клетки и объем легких, происходит повышение альвеолярного давления и осуществляется выдох. Давление в плевральной полости может стать даже выше атмосферного, благодаря сокращению экспираторных мышц, кроме того, уменьшается эластическая тяга легких.
Легко убедиться в том, что транспульмональная разница давлений совершенно необходима для нормального дыхания: стоит только нарушить герметичность плевральной полости. Если атмосферный воздух попадет в плевральную полость, то давление внутри легких и плевральной полости окажутся одинако-
нуемо наступает смерть. Кроме травматического пневмоторакса существует лечебный пневмоторакс, при котором в плевральную полость вводится строго определенное количество воздуха. Лечебный пневмоторакс применяется с целью ограничения функции больного легкого, например при туберкулезе легкого, абсцессах в легком и т.д.
Рисунок 3А. Плевральное давление во время дыхания
Рисунок 3Б. Изменение внутрилегочного и внутриплеврального давления во время дыхания
Механизмы изменения объема легких при дыхании можно продемонстрировать с помощью модели Дондерса (рис. 4), на которой с помощью двух мано-
метров можно проследить за изменением давления и в легких, и в плевральной полости.
Если отсосать воздух из колокола, то легкие расправятся, т.к. в плевральной полости давление станет ниже внутрилегочного, появится разница давлений между внутрилегочным пространством и плевральной полостью - транспульмональное давление.
Теперь можно попробовать снизить давление в легких, оттягивая эластическую мембрану вниз и имитируя сокращение диафрагмы и увеличение объема грудной клетки. При этом уменьшится и внутриплевральное давление, что будет видно по изменению уровня жидкости в манометре. Такие изменения внутрилегочного и плеврального давлений характерны для фазы вдоха.
Рисунок 4. Модель Дондерса
Легочные объемы и емкости
Для функциональной характеристики дыхания принято использовать различные легочные объемы и емкости. Легочные объемы подразделяются на статические и динамические. Первые измеряют при завершенных дыхательных движениях. Вторые измеряют при проведении дыхательных движений и с ограничением времени на их выполнение. Емкость включает в себя несколько объемов. Объем воздуха в легких и дыхательных путях зависит от следующих показателей: 1) антропометрических индивидуальных характеристик человека и строения дыхательной системы; 2) свойств легочной ткани; 3) поверхностного натяжения альвеол; 4) силы, развиваемой дыхательными мышцами.
Дыхательный объем (ДО) — объем воздуха, который вдыхает и выдыхает человек во время спокойного дыхания (рис. 5). У взрослого человека ДО составляет примерно 500 мл. Величина ДО зависит от условий измерения (по-
кой, нагрузка, положение тела). ДО рассчитывают как среднюю величину после измерения примерно шести спокойных дыхательных движений.
Резервный объем вдоха (РО вд) — максимальный объем воздуха, который способен вдохнуть испытуемый после спокойного вдоха. Величина РО вд составляет 1,5—1,8 л.
Резервный объем выдоха (РО выд )—максимальный объем воздуха, который человек дополнительно может выдохнуть после спокойного выдоха. Величина РО выдоха ниже в горизонтальном положении, чем в вертикальном, уменьшается при ожирении. Она равна в среднем 1,0—1,4 л.
Остаточный объем (ОО) — объем воздуха, который остается в легких после максимального выдоха. Величина остаточного объема равна 1,0—1,5 л.
Исследование динамических легочных объемов представляет научный и клинический интерес, и их описание выходит за рамки курса нормальной физиологии,
Легочные емкости . Жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. У мужчин среднего возраста ЖЕЛ варьирует в пределах 3,5—5,0 л и более. Для женщин типичны более низкие величины (3,0—4,0 л). В зависимости от методики измерения ЖЕЛ различают ЖЕЛ вдоха, когда после полного выдоха производится максимально глубокий вдох и ЖЕЛ выдоха, когда после полного вдоха производится максимальный выдох.
Емкость вдоха (Е вд ) равна сумме дыхательного объема и резервного объема вдоха. У человека Е вд составляет в среднем 2,0-2.3 л.
Рисунок 5. Легочные объемы и емкости
Функциональная остаточная емкость (ФОЕ) — объем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и оста-
точного объема. ФОЕ измеряется методами газовой дилюции, или «разведения газов» и плетизмографически. На величину ФОЕ существенно влияет уровень физической активности человека и положение тела: ФОЕ меньше в горизонтальном положении тела, чем в положении сидя или стоя. ФОЕ уменьшается при ожирении вследствие уменьшения общей растяжимости грудной клетки.
Общая емкость легких (ОЕЛ) — объем воздуха в легких по окончании полного вдоха. ОЕЛ рассчитывают двумя способами:
ОЕЛ = 00 + ЖЕЛ или ОЕЛ = ФОЕ + Евд. ОЕЛ может быть измерена с помощью плетизмографии или методом газовой дилюции.
Измерение легочных объемов и емкостей имеет клиническое значение при исследовании функции системы внешнего дыхания у здоровых людей и при диагностике заболевания легких.
МИНУТНЫЙ ОБЪЕМ ДЫХАНИЯ
Одной из основных характеристик внешнего дыхания является минутный объем дыхания (МОД). Вентиляция легких определяется объемом воздуха вдыхаемого или выдыхаемого в единицу времени. МОД - это произведение дыха-
тельного объема на частоту дыхательных циклов . В норме, в покое ДО равен
500 мл, частота дыхательных циклов - 12 - 16 в минуту, отсюда МОД равен 6 - 7 л/мин. Максимальная вентиляция легких - это объем воздуха, который проходит через легкие за 1 минуту во время максимальных по частоте и глубине дыхательных движений.
Итак, внешнее дыхание, или вентиляция легких обеспечивает поступление в легкие примерно 500 мл воздуха во время каждого вдоха (ДО). Насыщение крови кислородом и удаление углекислого газа происходит при контакте крови легочных капилляров с воздухом, содержащимся в альвеолах. Альвеоляр-
ный воздух - это внутренняя газовая среда организма млекопитающих и человека. Ее параметры - содержание кислорода и углекислого газа - постоянны. Количество альвеолярного воздуха примерно соответствует функциональной остаточной емкости легких - количеству воздуха, которое остается в легких после спокойного выдоха, и в норме равно 2500 мл. Именно этот альвеолярный воздух обновляется поступающим по дыхательным путям атмосферным воздухом. Следует иметь в виду, что в легочном газообмене участвует не весь вдыхаемый воздух, а лишь та его часть, которая достигает альвеол. Поэтому для оценки эф-
фективности легочного газообмена важна не столько легочная, сколько альвеолярная вентиляция.
Как известно, часть дыхательного объема не участвует в газообмене, заполняя анатомически мертвое пространство дыхательных путей - примерно 140 - 150 мл.
Кроме того, есть альвеолы, которые в данный момент
вентилируются, но не снабжаются кровью. Эта часть альвеол является альвеолярным мертвым пространством. Сумма анатомического и альвеолярного мертвых пространств называется функциональным, или физиологическим мертвым пространством. Примерно 1/3 дыхательного объема приходится на вентиляцию мертвого пространства, заполненного воздухом, который непосредственно не участвует в газообмене и лишь перемещается в просвете воздухоносных путей при вдохе и выдохе. Следовательно, вентиляция альвеолярных пространств - альвеолярная вентиляция - представляет собой легочную вентиляцию за вычетом вентиляции мертвого пространства. В норме альвеолярная вентиляция составляет 70 - 75 % величины МОД.
Расчет альвеолярной вентиляции проводится по формуле: МАВ = (ДО - МП) ЧД, где МАВ - минутная альвеолярная вентиляция, ДО - дыхательный объем, МП - объем мертвого пространства, ЧД - частота дыхания.
Попробуем рассчитать альвеолярную вентиляцию, используя данные, приведенные на рисунке 6, и приняв объем мертвого пространства за 150 мл. МАВ =
(500 - 150) 15 = 5250 мл/минуту.
Рисунок 6. Соотношение МОД и альвеолярной вентиляции
Используем эти данные для расчета еще одной величины, характеризующей альвеолярную вентиляцию - коэффициент вентиляции альвеол . Этот коэффициент показывает, какая часть альвеолярного воздуха обновляется при каждом вдохе. В альвеолах к концу спокойного выдоха находится около 2500
мл воздуха (ФОЕ), во время вдоха в альвеолы поступает 350 мл воздуха, следовательно, обновляется лишь 1/7 часть альвеолярного воздуха
Основные показатели вентиляции легких
Частота дыхания (ЧД)
Минутный объем дыхания (МОД) = ДО ЧД
Объем анатомического мертвого пространства (МП)
Дыхательный альвеолярный объем (ДАО) = ДО - МП
Коэффициент вентиляции альвеол
Минутная альвеолярная вентиляция
Соотношение между вентиляцией и перфузией легких.
Для газообмена в легких большое значение имеет соотношение между альвеолярной вентиляцией и кровотоком через малый круг кровообращения. Определенному минутному объему дыхания должен соответствовать определенный минутный объем кровотока, или перфузия капилляров альвеол - вентиляционноперфузионное отношение, или коэффициент. Вернемся к рисунку 6, рассчитаем этот коэффициент, исходя из того, что минутный объем кровотока в малом круге кровообращения (как и в большом) в норме равен 5000мл. Минутная альвеолярная вентиляция составляет 5200мл. При делении 5200 на 5000 получим вентиля- ционно-перфузионный коэффициент, который в норме не должен быть меньше
В отдельных частях легких соотношение между вентиляцией и перфузией неравномерно, что зачастую влияет на локализацию патологического процесса в той или иной доле легкого.
Рисунок 7. Распределение кровотока в различных зонах легкого
Оказывается, 90% капиллярного кровотока легких приходится на зону 2 (рис. 7), остальные 10% распределяются между 1 и 3 зонами. В верхушках легких давление в легочных артериях ниже альвеолярного. При этом возможно спадение капилляров. В норме это случается редко, однако возможно в случае кро-
вопотери или снижении артериального давления. В средней части давление в артериолах выше альвеолярного, а в нижних отделах даже венозное давление выше альвеолярного. Различное давление в сосудистом русле легких обусловлены силами гравитации и изменяется при изменении положения тела, в воде, в состоянии невесомости. Следует иметь в виду, что дыхательные колебания внутригрудного давления, действуя по принципу «двойного насоса», не только обеспечивают вентиляцию легких, но и стимулируют венозный возврат крови к сердцу.
ГАЗООБМЕН И ТРАНСПОРТ ГАЗОВ Газовый состав альвеолярного воздуха
Газообмен - это процесс выравнивание парциальных давлений газов в двух средах. Этот процесс осуществляется исключительно пассивным путем, движущей силой является градиент парциальных давлений газов. В организме человека и млекопитающих газообмен протекает в легких и тканях. В легких - это процесс обогащения венозной крови кислородом и удаление углекислого газа, а в тканях процесс переноса кислорода из капиллярной крови в ткани и удаление углекислого газа из тканей в кровь.
Обогащение кислородом венозной крови происходит путем переноса кислорода из альвеолярного воздуха в кровь. Остановимся подробнее на этом понятии, поскольку альвеолярный воздух - это внутренняя газовая среда нашего организма.
Прежде всего, заметим, что правильнее называть альвеолярный воздух альвеолярным газом, потому, что его состав существенно отличается от состава атмосферного воздуха. При спокойном дыхании состав альвеолярного газа мало зависит от фаз вдоха и выдоха, это постоянство состава альвеолярного газа является необходимым условием протекания газообмена. Дело в том, что дыхание - циклический процесс, а кровоток в капиллярах легких - непрерывный. Во время дыхательного цикла наблюдаются короткие периоды остановки дыхания - апноэ (на высоте вдоха и в конце выдоха), при которых вентиляции не происходит, а обмен газами продолжается. Если бы в течение этих периодов ФОЕ не обеспечивала сохранение в альвеолах некоторого количества кислорода, насыщение артериальной крови кислородом снизилось. Воздух, заполняющий мертвое пространство, играет роль буфера, который сглаживает колебания состава альвеолярного газа в ходе дыхательного цикла.
Газообмен это пассивный процесс, который протекает по градиенту давлений , попробуем установить величины этих градиентов. У здоровых людей парциальное давление углекислого газа в альвеолах практически совпадает с его напряжением в крови и составляет около 40 мм рт. ст. Парциальное давление кислорода в альвеолах равно в среднем 100 мм рт. ст. Нормальной величиной вентиляции для отдельного человека является та, которая обеспечивает эти значения. Постоянство состава альвеолярного воздуха поддерживается рефлекторной регуляцией МОД.
Вспомним, что парциальное давление - часть общего давления, приходящееся на отдельный газ (если бы он занимал весь объем смеси). Парциальное давление газа в смеси можно рассчитать по формуле:
Р газа = Р смеси С (%) / 100%, где С - процентное содержание газа. Для воздуха: Р атм = 760 мм рт.ст.
С кислорода = 20,9 %
Р кислорода = 159 мм рт.ст.
При изменении атмосферного давления изменяется и парциальное давление газов.
Газовый состав атмосферного, альвеолярного и выдыхаемого воздуха (содержание в % и парциальное давление в мм рт.ст.)
СРАР - спонтанное дыхание с постоянно положительным давлением в дыхательных путях
Весь контент iLive проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.
У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.
Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.
В настоящее время существуют различные устройства и аппараты, с помощью которых можно создавать избыточное давление в дыхательных путях как в течение всего дыхательного цикла, так и в отдельные его фазы. При осуществлении спонтанного дыхания с постоянно положительным давлением (СРАР) неизбежно возникают колебания давления, но оно всегда остается выше атмосферного. Этот метод широко используют в неонатологии, так как не требует интубации трахеи, хорошо переносится новорождёнными и не только улучшает лёгочный газообмен, но и стимулирует дыхательный центр.
Показания к применению СРАР
Показанием к применению СРАР считают артериальную гипоксемию (раО2 0,5), связанную с нарушением вентиляционно-перфузионных отношений и внутрилёгочным шунтированием, а также с центральным или обструктивным апноэ у новорожденных Обязательное условие - удовлетворительный уровень альвеолярной вентиляции (раСО2 7,25). Поэтому СРАР обычно эффективно при следующих состояниях:
- легкие и среднетяжелые формы ОРДС новорожденных,
- транзиторное тахипноэ новорождённых,
- центральное и обструктивное апноэ новорожденных,
- отучение от ИВЛ,
- профилактика и лечение дыхательной недостаточности после экстубации.
Методика проведения свввтавного дыхания с постоянно положительвым давлением в дыхательных путях
СРАР можно проводить, подключая устройства, регулирующие давление, к интубационной трубке, носовым или назофарингеальным катетерам.
Для СРАР у новорожденных детей обычно используют двойные носовые канюли. Их легко фиксировать, они мало беспокоят ребёнка и обеспечивают удовлетворительную герметичность. Поскольку ребенок дышит через естественные дыхательные пути, то кондиционирование дыхательной смеси обычно не требуется. Главный недостаток этого способа - травмирование слизистой носа. Примерно каждые 2 ч необходимо очищать канюли и санировать носовые ходы Для предотвращения скопления воздуха в желудке требуется введение желудочного зонда.
В качестве одиночного назофарингеального катетера можно использовать обычную интубационную трубку. Стабильность в поддержании давления при этом способе еще меньше, чем при использовании канюль. При попадании мокроты в катетер резко возрастает аэродинамическое сопротивление и работа дыхания.
Через интубационную трубку СРАР обычно осуществляют при отучении больного от ИВЛ. Это наиболее надежный способ поддержания давления, кондиционирования дыхательной смеси и мониторного контроля вентиляции, поскольку задействованы все возможности респиратора. Возможно сочетание СРАР и вспомогательной вентиляции или других методов респираторной поддержки Недостатки этого способа связаны с необходимостью эндотрахеальной интубации.
При проведении СРАР у детей обычно используют давление от 3 до 8 см. вод. ст. Такое давление в большинстве случаев обеспечивает стабильность легочных объемов, не вызывая выраженной гиперинфляции нормально функционирующих альвеол. Стартовые величины давления:
- 4-5 см вод ст при лечении новорождённых с массой 1500 г,
- 3-4 см вод ст при отучении от ИВЛ или после экстубации.
Концентрацию кислорода в дыхательной смеси обычно устанавливают на уровне 40-50%. При возникновении дискомфорта допустимо назначение седативных средств, кроме случаев, когда метод применяют для борьбы с центральным апноэ.
Через 20-30 мин после начала проведения СРАР и стабилизации состояния больного необходимо исследовать газовый состав крови. Если при удовлетворительной вентиляции сохраняется гипоксемия, следует увеличить давление в дыхательных путях на 2 см. вод. ст. Однако не стоит рутинно использовать давление выше +8 см. вод. ст., так как это обычно не даёт ощутимого прироста раО2, но может привести к значительному падению СВ.
Приемлемым считают такое давление, при котором нормализуются ритм и частота дыхания, уменьшается втяжение податливых мест грудной клетки, а ра02 стабилизируется в диапазоне 50-70 мм рт ст (раО2 - 90-95%) при отсутствии респираторного ацидоза.
В дальнейшем, при улучшении состояния ребенка, постепенно (по 5%) уменьшают концентрацию кислорода, доводя ее до нетоксического уровня (40%). Затем так же медленно (по 1-2 см. вод. ст.), под контролем газового состава крови, снижают давление в дыхательных путях. Когда удается довести давление до 3 см. вод. ст., проведение СРАР прекращают. Оксигенацию продолжают в палатке, устанавливая концентрацию кислорода на 10% выше, чем при СРАР.
Если, несмотря на проведение СРАР при давлении +8 см вод ст и концентрации кислорода выше 60%, сохраняется гипоксемия (раО2 60 мм рт ст и pH 60 мм рт ст и pH
Портал iLive не предоставляет медицинские консультации, диагностику или лечение.
Информация, опубликованная на портале, предназначена только для ознакомления и не должна использоваться без консультации со специалистом.
Внимательно ознакомьтесь с правилами и политикой сайта. Вы также можете связаться с нами!
Основы физиологии дыхания
Основной (хотя и не единственной) функцией легких является обеспечение нормального газообмена. Внешнее дыхание - это процесс газообмена между атмосферным воздухом и кровью в легочных капиллярах, в результате которого происходит артериализация состава крови: повышается давление кислорода и снижается давление СО2. Интенсивность газообмена в первую очередь определяется тремя патофизиологическими механизмами (легочной вентиляцией, легочным кровотоком, диффузией газов через альвеолярно-капиллярную мембрану), которые обеспечиваются системой внешнего дыхания.
Легочная вентиляция
Легочная вентиляция определяется следующими факторами (А.П. Зильбер):
- механическим аппаратом вентиляции, который, в первую очередь, зависит от активности дыхательных мышц, их нервной регуляции и подвижности стенок грудной клетки;
- эластичностью и растяжимостью легочной ткани и грудной клетки;
- проходимостью воздухоносных путей;
- внутрилегочным распределением воздуха и его соответствием кровотоку в различных отделах легкого.
При нарушениях одного или нескольких из приведенных выше факторов могут развиваться клинически значимые вентиляционные нарушения, проявляющиеся несколькими типами вентиляционной дыхательной недостаточности.
Из дыхательных мышц наиболее значимая роль принадлежит диафрагме. Ее активное сокращение приводит к уменьшению внутригрудного и внутриплеврального давления, которое становится ниже атмосферного давления, в результате чего и происходит вдох.
Вдох осуществляется за счет активного сокращения дыхательных мышц (диафрагмы), а выдох происходит в основном за счет эластической тяги самого легкого и грудной стенки, создающей экспираторный градиент давления, в физиологических условиях достаточный для выведения воздуха через воздухоносные пути.
При необходимости увеличения объема вентиляции происходит сокращение наружных межреберных, лестничных и грудинно-ключично-сосцевидных мышц (дополнительные инспираторные мышцы), также приводящее к увеличению объема грудной клетки и снижению внутригрудного давления, что способствует вдоху. Дополнительными экспираторными мышцами считают мышцы передней брюшной стенки (наружные и внутренние косые, прямые и поперечные).
Эластичность легочной ткани и грудной клетки
Эластичность легких. Движение потока воздуха во время вдоха (внутрь легких) и выдоха (из легких) определяется градиентом давления между атмосферой и альвеолами так называемым трансторакальным давлением (Ртр/т):
Ртр/т = Ральв - Ратм где Ралв, - альвеолярное, а Ратм - атмосферное давление.
Во время вдоха Ральв и Ртр/т становятся отрицательными, во время выдоха - положительными. В конце вдоха и в конце выдоха, когда воздух по воздухоносным путям не движется, а голосовая щель открыта, Ральв равно Ратм.
Уровень Ральв в свою очередь зависит от величины внутриплеврального давления (Рпл) и так называемого давления эластической отдачи легкого (Рэл):
Давление эластической отдачи - это давление, создаваемое эластической паренхимой легкого и направленное внутрь легкого. Чем выше эластичность легочной ткани, тем более значительным должно быть снижение внутриплеврального давления, чтобы произошло расправление легкого во время вдоха, и, следовательно, тем большей должна быть активная работа инспираторных дыхательных мышц. Высокая эластичность способствует более быстрому спадению легкого во время выдоха.
Еще один важный показатель, обратный эластичности легочной ткани - апатическая растяжимость легкого - представляет собой меру поддатливости легкого при его расправлении. На растяжимость (и величину давления эластической отдачи) легкого влияет множество факторов:
- Объем легкого: при малом объеме (например, в начале вдоха) легкое более податливо. При больших объемах (например, на высоте максимального вдоха) растяжимость легкого резко уменьшается и становится равной нулю.
- Содержание эластических структур (эластина и коллагена) в легочной ткани. Эмфизема легких, для которой, как известно, характерно снижение эластичности легочной ткани, сопровождается увеличением растяжимости легкого (снижением давления эластической отдачи).
- Утолщение альвеолярных стенок вследствие их воспалительного (пневмония) или гемодинамического (застой крови в легком) отека, а также фиброзирование ткани легкого существенно уменьшают растяжимость (податливость) легкого.
- Силы поверхностного натяжения в альвеолах. Они возникают па поверхности раздела газа и жидкости, которая изнутри тонкой пленкой выстилает альвеолы, и стремятся уменьшить площадь этой поверхности, создавая внутри альвеол положительное давление. Таким образом, силы поверхностного натяжения вместе с эластическими структурами легких обеспечивают эффективное спадение альвеол во время выдоха и в то же время препятствуют расправлению (растяжению) легкого во время вдоха.
Сурфактант, выстилающий внутреннюю поверхность альвеолы - это вещество, уменьшающее силу поверхностного натяжения.
Активность сурфактанта тем выше, чем он плотнее. Поэтому па вдохе, когда плотность и, соответственно, активность сурфактанта уменьшается, силы поверхностного натяжения (т.е. силы, стремящиеся сократить поверхность альвеол) увеличиваются, что способствует последующему спадению легочной ткани во время выдоха. В конце выдоха плотность и активность сурфактанта возрастают, а силы поверхностного натяжения уменьшаются.
Таким образом, после окончания выдоха, когда активность сурфактанта максимальна, а силы поверхностного натяжения, препятствующие расправлению альвеол, минимальны, дли последующего расправления альвеол на вдохе требуются меньшие затраты энергии.
Важнейшими физиологическими функциями сурфактанта являются:
- увеличение растяжимости легкого благодаря снижению сил поверхностного натяжения;
- уменьшение вероятности спадения (коллапса) альвеол во время выдоха, поскольку при малых объемах легкого (в конце выдоха) его активность максимальна, а силы поверхностного натяжения минимальны;
- предотвращение перераспределения воздуха из более мелких в более крупные альвеолы (согласно закону Лапласа).
При заболеваниях, сопровождающихся дефицитом сурфактанта, ригидность легких увеличивается, альвеолы спадаются (развиваются ателектазы), возникает дыхательная недостаточность.
Пластическая отдача грудной стенки
Эластические свойства грудной стенки, которые также оказывают большое влияние на характер легочной вентиляции, определяются состоянием костного скелета, межреберных мышц, мягких тканей, париетальной плевры.
При минимальных объемах грудной клетки и легких (во время максимального выдоха) и в начале вдоха эластическая отдача грудной стенки направлена кнаружи, что создает отрицательное давление и способствует расправлению легкого. По мере увеличения объема легкого во время вдоха эластическая отдача грудной стенки уменьшатся. Когда объем легкого достигает примерно 60% величины ЖЕЛ, эластическая отдача грудной стенки уменьшается до нуля, т.е. до уровня атмосферного давления. При дальнейшем увеличении объема легких эластическая отдача грудной стенки направлена кнутри, что создает положительное давление и способствует спадению легких во время последующего выдоха .
Некоторые заболевания сопровождаются повышением ригидности грудной стенки, что оказывает влияние на способность грудной клетки растягиваться (во время вдоха) и спадаться (во время выдоха). К числу таких заболеваний относятся ожирение, кифо- сколиоз, эмфизема легких, массивные шварты, фиброторакс и др.
Проходимость воздухоносных путей и мукоцилиарный клиренс
Проходимость воздухоносных путей во многом зависит от нормального дренирования трахеобронхиального секрета, что обеспечивается, прежде всего, функционированием механизма мукоцилиарного очищения (клиренса) и нормальным кашлевым рефлексом.
Защитная функция мукоцилиарного аппарата определяется адекватной и согласованной функцией мерцательного и секреторного эпителия, в результате чего тонкая пленка секрета перемещается по поверхности слизистой оболочки бронхов и инородные частицы удаляются. Перемещение бронхиального секрета происходит за счет быстрых толчков ресничек в краниальном направлении с более медленной отдачей в противоположную сторону. Частота колебаний ресничек составляет 1000-1200 в мин, что обеспечивает движение бронхиальной слизи со скоростью 0,3-1,0 см/мин в бронхах и 2-3 см/мин в трахее.
Следует также помнить, что бронхиальная слизь состоит из 2-х слоев: нижнего жидкого слоя (золя) и верхнего вязко-эластичного - геля, которого касаются верхушки ресничек. Функция реснитчатого эпителия во многом зависит от соотношения толщины юля и геля: увеличение толщины геля или уменьшение толщины золя приводят к снижению эффективности мукоцилиарного клиренса.
На уровне респираторных бронхиол и альвеол мукоцилиарного аппарата ист. Здесь очищение осуществляется с помощью кашлевого рефлекса и фагоцитарной активности клеток.
При воспалительном поражении бронхов, особенно хроническом, эпителий морфологически и функционально перестраивается, что может приводить к мукоцилиарной недостаточности (снижению защитных функций мукоцилиарного аппарата) и скоплению мокроты в просвете бронхов.
В патологических условиях проходимость воздухоносных путей зависит не только от функционирования механизма мукоцилиарного очищения, но и от наличия бронхоспазма, воспалительного отека слизистой оболочки и феномена раннего экспираторного закрытия (коллапса) мелких бронхов.
Регуляция просвета бронхов
Тонус гладкой мускулатуры бронхов определяется несколькими механизмами, связанными со стимуляцией многочисленных специфических рецепторов бронхов:
- Холинергические (парасимпатические) влияния происходят в результате взаимодействия нейромедиатора ацетилхолина со специфическими мускариновыми М-холинорецепторами. В результате такого взаимодействия развивается бронхоспазм.
- Симпатическая иннервация гладкой мускулатуры бронхов у человека выражена в малой степени, в отличие, например, от гладкой мускулатуры сосудов и сердечной мышцы. Симпатические влияния на бронхи осуществляются в основном благодаря воздействию циркулирующего адреналина на бета2-адренорецепторы, что приводит к расслаблению гладкой мускулатуры.
- На тонус гладкой мускулатуры влияет также т.н. «неадренергическая, нехолинергическая» нервная система (НАНХ), волокна которой проходят в составе блуждающего нерва и высвобождают несколько специфических нейромедиаторов, взаимодействующих с соответствующими рецепторами гладкой мускулатуры бронхов. Важнейшими из них являются:
- вазоактивный интестинальный полипептид (VIP);
- субстанция Р.
Стимуляция VIP-рецепторов приводит к выраженному расслаблению, а бета-рецепторов к сокращению гладких мышц бронхов. Считается, что нейроны НАНХ-системы оказывают наибольшее влияние па регуляцию просвета воздухоносных путей (К.К. Murray).
Кроме того, в бронхах содержится большое количество рецепторов, взаимодействующих с различными биологически активными веществами, в том числе с медиаторами воспаления - гистамином, брадикинином, лейкотриенами, простагландинами, фактором активации тромбоцитов (ФАТ), серотонином, аденозином и др.
Тонус гладкой мускулатуры бронхов регулируется несколькими нейрогуморальными механизмами:
- Дилатация бронхов развивается при стимуляции:
- бета2-адренорецепторов адреналином;
- VIР-рецепторов (системы НАНХ) вазоактивным интестинальным полипептидом.
- Сужение просвета бронхов возникает при стимуляции:
- М-холинергических рецепторов ацетилхолином;
- рецепторов к субстанции Р (системы НАНХ);
- Альфа-адренорецепторов (например, при блокаде или снижении чувствительности бета2-адренергических рецепторов).
Внутрилегочное распределение воздуха и его соответствие кровотоку
Неравномерность вентиляции легких, существующая в норме, определяется, прежде всего, неоднородностью механических свойств легочной ткани. Наиболее активно вентилируются базальные, в меньшей степени - верхние отделы легких. Изменение эластических свойств альвеол (в частности, при эмфиземе легких) или нарушение бронхиальной проходимости значительно усугубляют неравномерность вентиляции, увеличивают физиологическое мертвое пространство и снижают эффективность вентиляции.
Диффузия газов
Процесс диффузии газов через альвеолярно-капиллярного мембрану зависит
- от градиента парциального давления газов по обе стороны мембраны (в альвеолярном воздухе и в легочных капиллярах);
- от толщины альвеолярно-капиллярной мембраны;
- от общей поверхности зоны диффузии в легком.
У здорового человека парциальное давление кислорода (РО2) в альвеолярном воздухе в норме составляет 100 мм рт. ст., а в венозной крови - 40 мм рт. ст. Парциальное давление СО2 (РСО2) в венозной крови составляет 46 мм рт. ст., в альвеолярном воздухе - 40 мм рт. ст. Таким образом, градиент давления по кислороду составляет 60 мм рт. ст., а по углекислому газу - всего 6 мм рт. ст. Однако скорость диффузии СО2 через альвеолярно-капиллярную мембрану примерно в 20 раз больше, чем О2. Поэтому обмен СО2 в легких происходит достаточно полно, несмотря на сравнительно низкий градиент давления между альвеолами и капиллярами.
Альвеолярно-капиллярная мембрана состоит из сурфактантного слоя, выстилающего внутреннюю поверхность альвеолы, альвеолярной мембраны, интерстициального пространства, мембраны легочного капилляра, плазмы крови и мембраны эритроцита. Повреждение каждого из этих компонентов альвеолярно-капиллярной мембраны может приводить к существенному затруднению диффузии газов. Вследствие этого при заболеваниях указанные выше значения парциальных давлений О2 и СО2 в альвеолярном воздухе и капиллярах могут существенно изменяться.
Легочный кровоток
В легких существуют две системы кровообращения: бронхиальный кровоток, относящийся к большому кругу кровообращения, и собственно легочный кровоток, или так называемый малый круг кровообращения. Между ними как при физиологических, так и при патологических условиях существуют анастомозы.
Легочный кровоток в функциональном отношении расположен между правой и левой половинами сердца. Движущей силой легочного кровотока служит градиент давления между правым желудочком и левым предсердием (в норме составляющий около 8 мм рт. ст.). В легочные капилляры по артериям поступает бедная кислородом и насыщенная углекислым газом венозная кровь. В результате диффузии газов в области альвеол происходят насыщение крови кислородом и ее очищение от углекислого газа, в результате чего от легких в левое предсердие по венам оттекает артериальная кровь. На практике эти величины могут колебаться в значительных пределах. Особенно это относится к уровню РаО2 в артериальной крови, который составляет обычно около 95 мм рт. ст.
Уровень газообмена в легких при нормальной работе дыхательных мышц, хорошей проходимости воздухоносных путей и малоизмененной эластичности легочной ткани определяется скоростью перфузии крови через легкие и состоянием альвеолярно-капиллярной мембраны, через которую под действием градиента парциального давления кислорода и углекислого газа осуществляется диффузия газов.
Вентиляционно-перфузионные отношения
Уровень газообмена в легких, помимо интенсивности легочной вентиляции и диффузии газов, определяется также величиной вентиляционно-перфузионного отношения (V/Q). В норме при концентрации кислорода но вдыхаемом воздухе 21% и нормальном атмосферном давлении отношение V/Q составляет 0,8.
При прочих равных условиях уменьшение оксигенации артериальной крови может быть обусловлено двумя причинами:
Читайте также:
- Анальные сосочки. Папиллит прямой кишки.
- Восстановление культей дистальных зубов. Рекомендации
- Рентгенограмма, УЗИ при зернистоклеточной опухоли пищевода
- Распространенность и социальная значимость ревматических заболеваний в Российской Федерации
- Увеличение роста, веса и поверхности плода. Темп роста эмбриона