Торможение антителообразования. Синтез антител по принципу обратной связи

Добавил пользователь Евгений Кузнецов
Обновлено: 14.12.2024

Природа антител. В ответ на введение антигена иммунная система вырабатывает антитела - белки, способные специфически соединяться с антигеном, вызвавшим их образование, и таким образом участвовать в иммунологических реакциях. Относятся антитела к γ-глобулинам, т. е. наименее подвижной в электрическом поле фракции белков сыворотки крови. В организме γ-гло-булины вырабатываются особыми клетками - плазмоцитами. Количество γ-глобулина в сыворотке крови составляет примерно 30% от всех белков крови (альбуминов, а-, b-глобулинов и др.). В соответствии с Международной классификацией γ-глобулины, несущие функции антител, получили название иммуноглобулинов и обозначаются символом Ig. Следовательно, антитела - это иммуноглобулины, вырабатываемые в ответ на введение антигена и способные специфически взаимодействовать с этим же антигеном.

Функции антител. Первичная функция антител состоит во взаимодействии их активных центров с комплементарными им детерминантами антигенов. Вторичная функция антител состоит в их способности:

§ связывать антиген с целью его нейтрализации и элиминации из организма, т. е. принимать участие в формировании защиты от антигена;

§ участвовать в распознавании «чужого» антигена;

§ обеспечивать кооперацию иммунокомпетентных клеток (макрофагов, Т- и В-лимфоцитов);

§ участвовать в различных формах иммунного ответа (фагоцитоз, киллерная функция, ГНТ, ГЗТ, иммунологическая толерантность, иммунологическая память).

Применение антител в медицине. Вследствие высокой специфичности и большой роли в защитных иммунных реакциях антитела используют для диагностики инфекционных и неинфекционных заболеваний, определения иммунного статуса организма, профилактики и терапии ряда инфекционных и неинфекционных болезней. Для этого существуют соответствующие иммунобиологические препараты, созданные на основе антител и имеющие целевое назначение (см. главу 10).

Структура антител. Белки иммуноглобулинов по химическому составу относятся к гликопротеидам, так как состоят из протеина и Сахаров; построены из 18 аминокислот. Имеют видовые отличия, связанные главным образом с набором аминокислот. Молекулярная масса иммуноглобулинов находится в пределах 150.900 кД. Их молекулы имеют цилиндрическую форму, они видны в электронном микроскопе. До 80% иммуноглобулинов имеют константу седиментации 7S; устойчивы к слабым кислотам, щелочам, нагреванию до 60ºС. Выделить иммуноглобулины из сыворотки крови можно физическими и химическими методами (электрофорез, изоэлектрическое осаждение спиртом и кислотами, высаливание, аффинная хроматография и др.). Эти методы используют в производстве при приготовлении иммунобиологических препаратов. Иммуноглобулины по структуре, антигенным и иммунобиологическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD. Иммуноглобулины М, G, А имеют подклассы. Например, IgG имеет четыре подкласса (IgG,, IgG2, IgGj, IgG4). Все классы и подклассы различаются по аминокислотной последовательности. Иммуноглобулины человека и животных сходны по строению.

Р. Портер и Д. Эдельман установили строение молекулы иммуноглобулинов. По их данным, молекулы иммуноглобулинов всех пяти классов состоят из полипептидных цепей: двух одинаковых тяжелых цепей Н (от англ, heavy - тяжелый) и двух одинаковых легких цепей - L (от англ, light - легкий), соединенных между собой дисульфидными мостиками. Соответственно каждому классу иммуноглобулинов, т.е. М, G, А, Е, D, различают пять типов тяжелых цепей: ц (мю), у (гамма), а (альфа), е (эпсилон) и 5 (дельта), имеющих молекулярную массу в пределах 50.70 кД (содержат 420-700 аминокислотных остатков) и различающихся по антигенносте. Легкие цепи всех пяти классов являются общими и бывают двух типов: к (каппа) и х (ламбда); имеют молекулярную массу 23 кД (214.219 аминокислотных остатков). L-цепи иммуноглобулинов различных классов могут вступать в соединение (рекомбинироваться) как с гомологичными, так и с гетерологичными Н-цепями. Однако в одной и той же молекуле могут быть только идентичные L-цепи (к или А.). Как в Н-, так и в L-цепях имеется вариабельная - V (от англ-various - разный) область, в которой последовательность аминокислот непостоянна, и константная - С (от англ, constant - постоянный) область с постоянным набором аминокислот. В легких и тяжелых цепях различают NH2- и СООН-концевые группы.При обработке γ-глобулина меркаптоэтанолом разрушаются дисульфидные связи и молекула иммуноглобулина распадается на отдельные цепи полипептидов. При воздействии протеолитическим ферментом папаином иммуноглобулин расщепляется на три фрагмента: два некристаллизующихся, содержащих детерми-нантные группы к антигену и названных Fab-фрагментами І и II (от англ, fragment antigen binding - фрагменты, связывающие антиген) и один кристаллизующий Fc-фрагмент (от англ, fragment crystal!izable). FabI- и FabII-фрагменты сходны по свойствам и аминокислотному составу и отличаются от Fc-фрагмента; Fab-и Fc-фрагменты являются компактными образованиями, соединенными между собой гибкими участками Н-цепи, благодаря чему молекулы иммуноглобулина имеют гибкую структуру. Как Н-цепи, так и L-цепи имеют отдельные, линейно связанные компактные участки, названные доменами; в Н-цепи их по 4, а в L-цепи - по 2. Активные центры, или детерминанты, которые формируются в V-областях, занимают примерно 2% поверхности молекулы иммуноглобулина. В каждой молекуле имеются две детерминанты, относящиеся к гипервариабельным участкам Н-и L-цепей, т. е. каждая молекула иммуноглобулина может связать две молекулы антигена. Поэтому антитела являются двухвалентными.

Типовой структурой молекулы иммуноглобулина является IgG. Остальные классы иммуноглобулинов отличаются от IgG дополнительными элементами организации их молекул. Так, IgM представляет собой пентамер, т.е. пять молекул IgG, соединенных полипептидной цепью, обозначаемой буквой J (от англ, joining chain - строение молекулы). IgA бывает обычным, т. е. мономерным, а также ди- и тримерным. Различают IgA сывороточный и секреторный. В последнем молекула соединена с секреторным компонентом (SC), выделяемым эпителиальными клетками, что защищает IgA от разрушения ферментами. IgE обладает высокой цитофильностью, т.е. способностью присоединяться к тучным клеткам и базофилам, в результате чего клетки выделяют гистамин и гистаминоподобные вещества, вызывающие ГНТ. IgD склонен к агрегации, имеет дополнительные дисульфидные связи.

В ответ на введение любого антигена могут вырабатываться антитела всех пяти классов. Обычно вначале вырабатывается IgM, затем IgG, остальные - несколько позже. Основную массу сывороточных иммуноглобулинов (70.80 %) составляет IgG; на долю IgA приходится 10-15 %, IgM - 5.10 %, IgE - 0,002 % и IgD - около 0,2 %. Содержание иммуноглобулинов меняется с возрастом. При некоторых патологических расстройствах наблюдаются отклонения в уровне их содержания в крови. Например, концентрация IgG возрастает при инфекционных болезнях, аутоиммунных расстройствах, снижается при некоторых опухолях, агаммаглобулинемии. Содержание IgM увеличивается при многих инфекционных болезнях, снижается при некоторых имму-нодефицитных состояниях.

Синтез антител. Как уже было сказано, иммуноглобулины синтезируются плазмоцитами, которые образуются в результате дифференцировки полипотентной стволовой клетки. Плазмоцит синтезирует как неиммунный, так и иммунный γ-глобулин. Информацию о специфичности синтезируемого иммуноглобулина плаз-моциты получают от В-лимфоцитов; L- и Н-цепи синтезируются на полирибосомах плазмоцита отдельно и соединяются в единую молекулу перед выделением из клетки. Сборка молекулы иммуноглобулина из Н- и L-цепей происходит очень быстро, в течение 1 мин. Выделение иммуноглобулина из плазмоцита осуществляется путем экзоцитоза или клазматоза, т. е. отпочковывания части цитоплазмы с иммуноглобулином. Каждый плазмоцит синтезирует до 2000 молекул в секунду. Синтезированные антитела поступают в лимфу, кровь, тканевую жидкость.

Генетика антител. Иммуноглобулин, как и всякий белок, обладает антигенностью. В молекуле иммуноглобулина различают три типа антигенных детерминант: изотипические, аллотипические и идиотипические. Изотипические детерминанты (изотипы) являются видовыми, т. е. они идентичны для всех особей данного вида (например, человека, кролика, собаки). Аллотипические детерминанты (аллотипы) у одних особей данного вида имеются, у других - отсутствуют, т. е. они являются индивидуальными. Наконец, идиотипические детерминанты (идиоти-пы) присущи только молекулам антител, обладающих определенной специфичностью. Эти детерминантные различия обусловлены числом и порядком чередования аминокислот в активном центре молекулы иммуноглобулина.

Изотипические детерминанты располагаются в С-части Н- и L-цепей и служат для дифференцировки иммуноглобулинов на классы и подклассы. Аллотипические детерминанты отражают внутривидовые антигенные различия иммуноглобулинов, а идиотипические детерминанты - индивидуальные различия в строении активного центра. Следовательно, имеется огромное разнообразие иммуноглобулинов, различающихся по типу антигенных детерминант. В зависимости от изотипов существует 5 классов и множество подклассов; от аллотипов - только у Н-цепей известно до 20 разновидностей; с учетом идиотипов, т. е. строения активного центра, антитела различаются не только в классах и подклассах, но даже в аллотипах. Этим определяются множественность антител и их специфичность по отношению ко всему многообразию антигенов, существующих в природе. Число вариаций активных центров антител огромно, практически беспредельно, так как оно определяется числом Н- и L-цепей, их вариантами (аллотипами) и особенно идиотипическим разнообразием активных центров. Такое различие закреплено генетически и осуществляется в процессе формирования активных центров в зависимости от специфичности активного центра антигена. Иммуноглобулиновая молекула кодируется тремя группами генов. Одна группа кодирует Н-цепь любого класса, другая - L-цепь к-типа и третья - L-цепь Я-типа. Благодаря постоянным мутациям генов, мутациям клонов им-мунокомпетентных клеток, главным образом лимфоцитов, практически на введение любого антигена могут последовать реакция образования специфического антитела и размножение того клона лимфоцитов, который синтезирует антитела, комплементарные антигену. Следует подчеркнуть, что одна плазматическая клетка вырабатывает антитела только одной специфичности. Следовательно, в организме должно существовать множество клонов иммунокомпетентных клеток. Окончательно механизм синтеза и передачи по наследству способности выработки огромного количества специфических антител буквально к любому из многочисленных антигенов неясен. Наиболее полно этот механизм объясняют клонально-селекционная теория Ф. Бернета и теория С. Тонегавы.

Динамика антителообразования. Способность к образованию антител появляется во внутриутробном периоде у 20-недельного эмбриона; после рождения начинается собственная продукция иммуноглобулинов, которая увеличивается до наступления зрелого возраста и несколько снижается к старости. Динамика образования антител имеет различный характер в зависимости от силы антигенного воздействия (дозы антигена), частоты воздействия антигена, состояния организма и его иммунной системы. При первичном и повторном введении антигена динамика антителообразования также различна и протекает в несколько стадий. Выделяют латентную, логарифмическую, стационарную фазу и фазу снижения. В латентной фазе происходят переработка и представление антигена иммунокомпетентным клеткам, размножение клона клеток, специализированного на выработку антител к данному антигену, начинается синтез антител. В этот период антитела в крови не обнаруживаются. Во время логарифмической фазы синтезированные антитела высвобождаются из плазмоцитов и поступают в лимфу и кровь. В стационарной фазе количество антител достигает максимума и стабилизируется, затем наступает фаза снижения уровня антител. При первичном введении антигена (первичный иммунный ответ) латентная фаза составляет 3-5 сут, логарифмическая - 7-15 сут, стационарная - 15-30 сут и фаза снижения - 1-6 мес и более. Особенностью первичного иммунного ответа является то, что первоначально синтезируется IgM, а затем IgG.

В отличие от первичного иммунного ответа при вторичном введении антигена (вторичный иммунный ответ) латентный период укорочен до нескольких часов или 1-2 сут, логарифмическая фаза характеризуется быстрым нарастанием и значительно более высоким уровнем антител, который в последующих фазах длительно удерживается и медленно, иногда в течение нескольких лет, снижается. При вторичном иммунном ответе в отличие от первичного синтезируются главным образом IgG.

Такое различие динамики антителообразования при первичном и вторичном иммунном ответе объясняется тем, что после первичного введения антигена в иммунной системе формируется клон лимфоцитов, несущих иммунологическую память о данном антигене. После повторной встречи с этим же антигеном клон лимфоцитов с иммунологической памятью быстро размножается и интенсивно включает процесс антителогенеза.

Очень быстрое и энергичное антителообразование при повторной встрече с антигеном используется в практических целях при необходимости получения высоких титров антител при производстве диагностических и лечебных сывороток от иммунизированных животных, а также для экстренного создания иммунитета при вакцинации.

Виды антител. Помимо полноценных антител, обладающих специфичностью и активным участием в реакциях иммунной защиты, выделяют нормальные, или естественные, антитела и неполные антитела. К нормальным относят антитела, обнаруживаемые у людей или животных, не подвергавшихся какой-либо иммунизации. Их роль в защите не совсем ясна. К неполным антителам относятся иммуноглобулины с одним активным центром (валентностью). Эти антитела неполноценны, так как, соединяясь с антигеном, они не могут агрегировать частицы в конгломераты. У неполных антител второй центр имеется, однако он экранирован или имеет малую авидность. Для выявления неполных антител используют реакцию Кумбса. После иммунизации, даже монодетерминантным антигеном, в пуле иммуноглобулинов, синтезируемых совокупностью клеток, содержатся антитела, различающиеся между собой, т. е. сыворотки содержат поликлональные антитела. Эта гетерогенность антител обусловлена тем, что каждый плазмоцит вырабатывает только один тип, вид, класс, подкласс антител. Следовательно, каждая клетка или ее потомство, клон вырабатывают свой тип антител, получивших название моноклопальных. Принципиально моноклональные антитела можно получить искусственно, культивируя каждую антителопродуцирующую клетку, т. е. получая моноклональную культуру клеток. Однако практически это трудно осуществимо. Поэтому гибридную клетку получают путем слияния иммунного антителопродуцирующего В-лимфоцита, т. е. лимфоцита, взятого от иммунного животного и раковой миеломной клетки. Такая гибридома приобретает свойства родительских клеток, т. е. хорошо размножается на искусственных питательных средах (как и миеломная клетка) и вырабатывает антитела, специфичные для данного В-лимфоцита. Впервые гибридомы, продуцирующие моноклональные антитела, получили Д. Келлер и Ц. Мильштейн (1975). Моноклональные антитела нашли широкое применение при создании диагностических и лечебных препаратов, а также при проведении различных исследований. Способы промышленного получения моноклональных антител описаны в главе 6.

В последние годы открыт еще один вид антител - абзимы. Это антитела-катализаторы, способные в несколько тысяч раз ускорять биохимические реакции, воздействуя на промежуточные вещества реакции. Механизм их действия изучается.

34( Часть 2)

B-лимфоциты (B-клетки) — это тип лимфоцитов, обеспечивающий гуморальный иммунитет.

У взрослого человека и млекопитающих B-лимфоциты образуются в костном мозге из стволовых клеток, у эмбрионов — в печени и костном мозге.

Главная функция B-лимфоцитов (а вернее плазматических клеток, в которые они дифференцируются) — это выработка антител. Воздействие антигена стимулирует образование клона B-лимфоцитов, специфического к данному антигену. Затем происходит дифференцировка новообразованных B-лимфоцитов в плазматические клетки, вырабатывающие антитела. Эти процессы проходят в лимфоидных органах, регионарных к месту попадания в организм чужеродного антигена.

В различных органах проходит накопление клеток, продуцирующих иммуноглобулины разных классов:

в лимфоузлах и селезенке находятся клетки, продуцирующие иммуноглобулины М и иммуноглобулины G;

в пейеровых бляшках и других лимфоидных образованиях слизистых оболочек находятся клетки, продуцирующие иммуноглобулины А и Е.

Контакт с любым антигеном инициирует образование антител всех пяти классов, но после включения регуляторных процессов в специфических условиях начинают преобладать иммуноглобулины определенного класса.

В норме в организме в небольших количествах присутствуют антитела практически ко всем существующим антигенам. Антитела, полученные от матери, присутствуют в крови новорожденного.

Антителообразование в плазматических клетках, которые образуются из B-лимфоцитов , тормозит выход в дифференцировку новых B-лимфоцитов по принципу обратной связи.

Новые B-клетки не выйдут в дифференцировку, пока в данном лимфоузле не начнется гибель клеток, продуцирующих антитела, и только в случае, если в нем будет еще антигенный стимул.

Данный механизм осуществляет контроль над ограничением выработки антител до уровня, который необходим для эффективной борьбы с чужеродными антигенами.

Этапы созревания

Антигеннезависимая стадия созревания В-лимфоцитов Антигеннезависимая стадия созревания В-лимфоцитов происходит под контролем локальных клеточных и гуморальных сигналов от микроокружения пре-В-лимфоцитов и не определяется контактом с Аг. На этой стадии происходит формирование отдельных пулов генов, кодирующих синтез Ig, а также экспрессия этих генов. Однако, на цитолемме пре-В-клеток ещё нет поверхностных рецепторов — Ig, компоненты последних находятся в цитоплазме. Образование В-лимфоцитов из пре-В-лимфоцитов сопровождается появлением на их поверхности первичных Ig, способных взаимодействовать с Аг. Только на этом этапе В-лимфоциты попадают в кровоток и заселяют периферические лимфоидные органы. Сформировавшиеся молодые В-клетки накапливаются в основном в селезёнке, а более зрелые — в лимфатических узлах. Антигензависимая стадия созревания В-лимфоцитов Антигензависимая стадия развития В-лимфоцитов начинается с момента контакта этих клеток с Аг (в том числе — аллергеном). В результате происходит активация В-лимфоцитов, протекающая в два этапа: пролиферации и диффе-ренцировки. • Пролиферация В-лимфоцитов обеспечивает два важных процесса: - Увеличение числа клеток, дифференцирующихся в продуцирующие AT (Ig) В-клетки (плазматические клетки). По мере созревания В-клеток и их превращения в плазматические клетки происходит интенсивное развитие бе-локсинтезирующего аппарата, комплекса Гольджи и исчезновение поверхностных первичных Ig. Вместо них продуцируются уже секретируемые (т.е. выделяемые в биологические жидкости — плазму крови, лимфу, СМЖ и др.) антигенспецифические AT. Каждая плазматическая клетка способна секретировать большое количество Ig — несколько тысяч молекул в секунду. Процессы деления и специализации В-клетки осуществляются не только под влиянием Аг, но и при обязательном участии Т-лимфоцитов-хелперов, а также выделяемых ими и фагоцитами цитокинов — факторов роста и дифференцировки; - Образование В-лимфоцитов иммунологической памяти. Эти клоны В-клеток представляют собой долгоживущие рециркулирующие малые лимфоциты. Они не превращаются в плазматические клетки, но сохраняют иммунную «память» об Аг. Клетки памяти активируются при повторной их стимуляции тем же самым Аг. В этом случае В-лимфоциты памяти (при обязательном участии Т-клеток-хелперов и ряда других факторов) обеспечивают быстрый синтез большого количества специфических AT, взаимодействующих с чужеродным Аг, и развитие эффективного иммунного ответа или аллергической реакции.

В-клеточный рецептор.

B-клеточный рецептор, или B-клеточный рецептор антигена (англ. B-cell antigen receptor, BCR) — мембранный рецептор В-клеток, специфично узнающий антиген. Фактически В-клеточный рецептор представляет собой мембранную форму антител (иммуноглобулинов), синтезируемых данным В-лимфоцитом, и имеет ту же субстратную специфичность, что и секретируемые антитела. С В-клеточого рецептора начинается цепь передачи сигнала внутрь клетки, которая в зависимости от условий может приводить к активации, пролиферации, дифференцировке или апоптозу В-лимфоцитов[2]. Сигналы, поступающие (или не поступающие) от B-клеточного рецептора и его незрелой формы (пре-В-клеточного рецептора), оказываются критическими в созревании В-лимфоцитов и в формировании репертуара антител организма.

Помимо мембранной формы антитела, в состав B-клеточного рецепторного комплекса входит вспомогательный белковый гетеродимер Igα/Igβ (CD79a/CD79b), который строго необходим для функционирования рецептора. Передача сигнала от рецептора проходит при участии таких молекул, как Lyn, Syk, Btk, PI3K, PLCγ2 и других.

Известно, что В-клеточный рецептор играет особую роль в развитии и поддержании злокачественных В-клеточных заболеваний крови. В связи с этим большое распространение получила идея применения ингибиторов передачи сигнала от этого рецептора для лечения данных заболеваний. Несколько таких препаратов показали себя эффективными и сейчас проходят клинические испытания. Но мы про них ничего и никому не скажем. т-с-с-сс!

В1 и В2- популяции.

Выделяют две субпопуляции В-клеток: В-1 и B-2. Субпопуляцию В-2 составляют обычные В-лимфоциты, к которым относится всё сказанное выше. В-1 — это относительно небольшая группа В-клеток, обнаруживаемая у человека и мышей. Они могут составлять около 5% от общей популяции B-клеток. Такие клетки появляются в течение эмбрионального периода. На своей поверхности они экспрессируют IgM и небольшое количество (или вовсе не экспрессируют) IgD. Маркером этих клеток является CD5. Однако он не является обязательным компонентом клеточной поверхности. В эмбриональном периоде В1-клетки появляются из стволовых клеток костного мозга. В течение жизни пул B-1-лимфоцитов поддерживается за счёт активности специализированных клеток-предшественников и не пополняется за счёт клеток, происходящих из костного мозга. Клетка-предшественница отселяется из кроветворной ткани на свою анатомическую нишу — в брюшную и плевральную полости — ещё в эмбриональном периоде. Итак, место обитания B-1-лимфоцитов — прибарьерные полости.

B-1-лимфоциты значительно отличаются от B-2-лимфоцитов по антигенной специфичности продуцируемых антител. Антитела, синтезированные B-1-лимфоцитами, не имеют значительного разнообразия вариабельных участков молекул иммуноглобулинов, но, напротив, ограничены в репертуаре распознаваемых антигенов, и эти антигены — наиболее распространённые соединения клеточных стенок бактерий. Все B-1-лимфоциты — как бы один не слишком специализированный, но определённо ориентированный (антибактериальный) клон. Антитела, продуцируемые B-1-лимфоцитами, почти исключительно IgM, переключение классов иммуноглобулинов в B-1-лимфоцитах не «предусмотрено». Таким образом, B-1-лимфоциты — «отряд» противобактериальных «пограничников» в прибарьерных полостях, предназначенных для быстрой реакции на «просачивающиеся» через барьеры инфекционные микроорганизмы из числа широко распространённых. В сыворотке крови здорового человека преобладающая часть иммуноглобулинов — продукт синтеза как раз B-1-лимфоцитов, т.е. это относительно полиспецифичные иммуноглобулины антибактериального назначения.

Т-лимфоциты образуют три основные субпопуляции:

1) Т-киллеры осуществляют иммунологический генетический надзор, разрушая мутированные клетки собственного организма, в том числе и опухолевые, и генетически чужеродные клетки трансплантатов. Т-киллеры составляют до 10 % Т-лимфоци-тов периферической крови. Именно Т-киллеры своим воздействием вызывают отторжение пересаженных тканей, но это и первая линия защиты организма от опухолевых клеток;

2) Т-хелперы организуют иммунный ответ, воздействуя на В-лимфоциты и давая сигнал для синтеза антител против появившегося в организме антигена. Т-хелперы секретируют интерлейкин-2, воздействующий на В-лимфоциты, и г-интерферон. Их в периферической крови до 60-70 % общего числа Т-лимфоцитов;

3) Т-супрессоры ограничивают силу иммунного ответа, контролируют активность Т-киллеров, блокируют деятельность Т-хелперов и В-лимфоцитов, подавляя избыточный синтез антител, которые могут вызывать аутоиммунную реакцию, т. е. обратиться против собственных клеток организма.

Т-супрессоры составляют 18-20 % Т-лимфоцитов периферической крови. Избыточная активность Т-суп-рессоров может привести к угнетению иммунного ответа вплоть до его полного подавления. Это бывает при хронических инфекциях и опухолевых процессах. В то же время недостаточная деятельность Т-супрес-соров приводит к развитию аутоиммунных заболеваний в связи с повышенной активностью Т-киллеров и Т-хелперов, не сдерживаемых Т-супрессо-рами. Для регулирования иммунного процесса Т-супрессоры секретируют до 20 различных медиаторов, ускоряющих или замедляющих активность Т- и В-лимфоцитов. Кроме трех основных видов, существуют и другие виды Т-лимфоцитов, в том числе Т-лимфоциты иммунологической памяти, сохраняющие и передающие информацию об антигене. При повторной встрече с этим антигеном они обеспечивают его распознавание и тип иммунологического ответа. Т-лимфоциты, выполняя функцию клеточного имму-нитета, кроме того, синтезируют и секретируют ме-диаторы (лимфокины), которые активизируют или за-медляют деятельность фагоцитов, а также медиаторы с цитотоксилогическим и интерферонопо-добным действиями, облегчая и направляя действие неспецифической системы.

Антителогенез (теории образования антител)

В настоящее время механизм образования антител, в основном, расшифрован, однако относительно отдельных этапов существуют лишь гипотезы.

Теория «боковых цепей»или селективная (П. Эрлих, 1897 г.): антитела - это специфические рецепторы («боковые цепи») на поверхности клеток, образующиеся еще до встречи с антигеном; антиген, попав в организм, соединяется с этими рецепторами, клетки активируются и продуцируют большое количество этих рецепторов, которые попадают в кровь и выполняют функцию антител.

Матричная или инструктивная теория:

Ø теория прямой матрицы (Ф. Гауровиц 1930 г., Л. Полинг 1940 г.) - антиген проникает в клетку и его детерминантная группа служит матрицей для синтеза антител (несогласованность с современными представлениями о синтезе белка ДНК-иРНК-белок);

Ø теория непрямой матрицы (Ф. Бернет, Ф. Феннер 1949г.) - антигены связываются с иРНК на рибосомах и контролируют синтез γ-глобулина, специфичного по отношению к данному антигену.

Клонально-селекционная теория или естественной селекции (Н.К. Ерне 1955 г., Ф. Бернет, 1959 г.):

Ø Антиген является селективным фактором.

Ø Связывание антигена происходит специфическими рецепторами, находящимися на поверхности иммунокомпетентных клеток (В-лимфоцитов).

Ø При встрече с антигеном В-лимфоциты начинают пролиферировать и превращаться в плазматические клетки, которые синтезируют антитела.

Ø Каждая антителопродуцирующая клетка может синтезировать только один вид антител определенной специфичности.

Теория депрессивных генов или молекулярно-биологическая (Л. Сциллард 1960 г.) - ИКК вырабатывать антитела различной специфичности, однако эта способность репрессирована ферментом; антигены связываются с ферментом и снимают его действие.

Динамика образования антител. Первичный и вторичный иммунный ответ.

Способность к образованию ан­тител появляется во внутриутробном периоде у 20-недельного эмбриона; после рождения начинается собственная продукция иммуноглобулинов, которая увеличивается до наступления зре­лого возраста и несколько снижается к старости. Динамика об­разования антител имеет различный характер в зависимости от силы антигенного воздействия (дозы антигена), частоты воздействия антигена, состояния организма и его иммунной системы. При первичном и повторном введении антигена динамика антителообразования также различна и протекает в несколько ста­дий. Выделяют латентную, логарифмическую, стацио­нарную фазу и фазу снижения.


В латентной фазе происходят переработка и представление антигена иммунокомпетентным клеткам, размножение клона клеток, специализированного на выработку антител к данному антигену, начинается синтез ан­тител. В этот период антитела в крови не обнаруживаются.

Во время логарифмической фазы синтезированные антитела высво­бождаются из плазмоцитов и поступают в лимфу и кровь.

В ста­ционарной фазе количество антител достигает максимума и ста­билизируется, затем наступает фаза снижения уровня антител. При первичном введении антигена (первичный иммунный от­вет) латентная фаза составляет 3—5 сут, логарифмическая — 7— 15 сут, стационарная — 15—30 сут и фаза снижения — 1—6 мес и более. Особенностью первичного иммунного ответа является то, что первоначально синтезируется IgM, а затем IgG.

В отличие от первичного иммунного ответа при вторичном введении антигена (вторичный иммунный ответ) латентный период укорочен до нескольких часов или 1—2 сут, логарифми­ческая фаза характеризуется быстрым нарастанием и значитель­но более высоким уровнем антител, который в последующих фазах длительно удерживается и медленно, иногда в течение не­скольких лет, снижается. При вторичном иммунном ответе в отличие от первичного синтезируются главным образом IgG.

Такое различие динамики антителообразования при первич­ном и вторичном иммунном ответе объясняется тем, что после первичного введения антигена в иммунной системе формирует­ся клон лимфоцитов, несущих иммунологическую память о данном антигене. После повторной встречи с этим же антиге­ном клон лимфоцитов с иммунологической памятью быстро раз­множается и интенсивно включает процесс антителогенеза.

Очень быстрое и энергичное антителообразование при повтор­ной встрече с антигеном используется в практических целях при необходимости получения высоких титров антител при произ­водстве диагностических и лечебных сывороток от иммунизиро­ванных животных, а также для экстренного создания иммуни­тета при вакцинации

Научная электронная библиотека


Антитела (иммуноглобулины, ИГ, Ig) - это особый класс гликопротеинов (т.е. белков с присоединенных к ним углеводными остатками), присутствующих в сыворотке крови, тканевой жидкости или на клеточной мембране, которые распознают и связывают антигены. Иммуноглобулины синтезируются В-лимфоцитами (плазматическими клетками) в ответ на вещества определенной структуры - антигены. Антитела используются иммунной системой для идентификации и нейтрализации чужеродных и нежелательных эндогенных объектов - например, бактерий и вирусов, опухолевых клеток и др. Они являются важнейшим фактором специфического гуморального иммунитета. Антитела выполняют две функции: антиген-связывающую и эффекторную (вызывают тот или иной иммунный ответ, например, запускают классическую схему активации комплемента).

Антитела синтезируются плазматическими клетками, которыми становятся В-лимфоциты в ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом - характерным фрагментом антигена.

Антитела являются относительно крупными (~150 кДа для IgG) гликопротеинами, имеющими сложное строение. Антитела состоят из двух идентичных тяжелых цепей и из двух идентичных лёгких цепей, т.е.
фрагментов с меньшим и большим молекулярным весом (рис. 3). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding - антиген-связывающий фрагмент) и один Fc (англ. fragment crystallizable - фрагмент, способный к кристаллизации). Fab фрагменты называются также вариабельной областью антител, т.к. именно их строение определяет связывающую функцию Ат и варьируется в зависимости от структуры антигена. Fc фрагмент называется константной областью Ат, т.к. у особей данного вида для всех молекул Ат этот фрагмент является идентичным.



Рис. 5. Структура антител

В зависимости от выполняемых функций антитела могут существовать как в различных формах (классы иммуноглобулинов): мономерной (IgG, IgD, IgE, сывороточный IgA) или в олигомерной форме (димер-секреторный IgA, пентамер - IgM). Схематичное строение

Иммуноглобулины класса G (IgG) - основной иммуноглобулин сыворотки здорового человека, составляет 70-75 % всей фракции иммуноглобулинов. IgG наиболее активны во вторичном иммунном ответе и антитоксическом иммунитете. Являются единственной фракцией иммуноглобулинов, способной к транспорту через плацентарный барьер и тем самым обеспечивают иммунитет плода и новорожденного. IgG являются самыми небольшими молекулами по сравнению с другими классами Ig (молекулярная масса М = 146 кДа).

Иммуноглобулины класса А (IgA) содержатся в сыворотке (15-20 %
всей фракции Ig), в секреторном компоненте: слюне, слезах, молозиве, молоке, отделяемом слизистой оболочки мочеполовой
и респираторной системы. IgA представлены в виде мономеров (80 % в сыворотке), димеров (в секрете), и тримеров. Средняя молекулярная масса IgA М = 500 кДа.

Иммуноглобулины класса М (IgM) являются пентамерами IgG и составляют до 10 % фракции иммуноглобулинов. Появляются IgM при первичном иммунном ответе B-лимфоцитами на неизвестный антиген. IgM встроены в плазматическую мембрану B-лимфоцитов и выполняют роль антиген распознающего рецептора. Средняя молекулярная масса IgМ М = 970 кДа.

Иммуноглобулины класса Е (IgE) - мономеры. Их функция заключается в связывании с поверхностью базофилов и тучных клеток, с последующим присоединением к ним антигена, при этом происходит дегрануляцию и выброс в кровь гистамина и серотонина - медиаторов воспаления. IgE участвуют в защите от паразитарных инфекций, обуславливают многие аллергические реакции. М = 200 кДа.


Рис. 6. Классы иммуноглобулинов

Антитела также классифицируют по типу антигена и, соответственно, по выполняемым Ат функциям. По этому принципу можно выжделить несколько основных классов антител:

● Антиинфекционные или антипаразитарные антитела, вызывающие гибель или нарушение жизнедеятельности возбудителя инфекции либо паразита.

● Антитоксические антитела, не вызывающие гибели самого возбудителя или паразита, но обезвреживающие вырабатываемые им токсины, либо другие экзогенные токсические вещества.

● «Антитела-свидетели заболевания», наличие которых в организме сигнализирует о знакомстве иммунной системы с данным антигеном (возбудителем) в прошлом или о текущем присутствии этого антигена (возбудителя), но которые не играют существенной роли в борьбе организма с возбудителем (не обезвреживают ни самого возбудителя, ни его токсины, а связываются со второстепенными белками возбудителя).

● Естественные антитела - антитела к эндогенным соединениям, присутствующие в здоровом организме и выполняющие регулятор-
ные функции;

● Аутоагрессивные антитела, или аутологичные антитела, аутоантитела - антитела, способные образовываться из естественных антител и вызывающие разрушение или повреждение нормальных, здоровых тканей самого организма хозяина и запускающие механизм развития аутоиммунных заболеваний.

● Аллореактивные антитела, или гомологичные антитела, аллоантитела - антитела против антигенов тканей или клеток других организмов того же биологического вида. Аллоантитела играют важную роль в процессах отторжения аллотрансплантантов, например, при пересадке почки, печени, костного мозга, и в реакциях на переливание несовместимой крови.

● Гетерологичные антитела, или изоантитела - антитела против антигенов тканей или клеток организмов других биологических видов. Изоантитела являются причиной невозможности осуществления ксенотрансплантации даже между эволюционно близкими видами (например, невозможна пересадка печени шимпанзе человеку) или видами, имеющими близкие иммунологические и антигенные характеристики (невозможна пересадка органов свиньи человеку). К изоантителам относятся также вторичные (антивидовые) антитела, используемые в различных видах ИХМ.

● Антиидиотипические антитела - антитела против антител, вырабатываемых самим же организмом. Этот вид антител специфичен
к вариабельному участку антител, так называемому идиотипу. Антиидиотипические антитела играют важную роль в связывании и обезвреживании избытка антител, в иммунной регуляции выработки антител. Кроме того, антиидиотипическое «антитело против антитела» зеркально повторяет пространственную конфигурацию исходного антигена, против которого было выработано исходное антитело (рис. 5). И тем самым антиидиотипическое антитело служит для организма фактором иммунологической памяти, аналогом исходного антигена, который остаётся в организме и после уничтожения исходных антигенов. В свою очередь, против антиидиотипических антител могут вырабатываться анти-антиидиотипические антитела и т.д.

Читайте также: